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Abstract. The present paper forms the fourth and final paper in a series
of papers concerning “inter-universal Teichmüller theory”. In the first three
papers of the series, we introduced and studied the theory surrounding the log-
theta-lattice, a highly non-commutative two-dimensional diagram of “miniature

models of conventional scheme theory”, called Θ±ellNF-Hodge theaters, that were
associated, in the first paper of the series, to certain data, called initial Θ-data.
This data includes an elliptic curve EF over a number field F , together with a
prime number l ≥ 5. Consideration of various properties of the log-theta-lattice

led naturally to the establishment, in the third paper of the series, of multiradial
algorithms for constructing “splitting monoids of LGP-monoids”. Here, we
recall that “multiradial algorithms” are algorithms that make sense from the point

of view of an “alien arithmetic holomorphic structure”, i.e., the ring/scheme
structure of a Θ±ellNF-Hodge theater related to a given Θ±ellNF-Hodge theater by
means of a non-ring/scheme-theoretic horizontal arrow of the log-theta-lattice. In
the present paper, estimates arising from these multiradial algorithms for splitting

monoids of LGP-monoids are applied to verify various diophantine results which
imply, for instance, the so-called Vojta Conjecture for hyperbolic curves, the ABC
Conjecture, and the Szpiro Conjecture for elliptic curves. Finally, we examine
— albeit from an extremely naive/non-expert point of view! — the foundational/set-

theoretic issues surrounding the vertical and horizontal arrows of the log-theta-lattice
by introducing and studying the basic properties of the notion of a “species”, which
may be thought of as a sort of formalization, via set-theoretic formulas, of the intuitive
notion of a “type of mathematical object”. These foundational issues are closely

related to the central role played in the present series of papers by various results
from absolute anabelian geometry, as well as to the idea of gluing together
distinct models of conventional scheme theory, i.e., in a fashion that lies outside the

framework of conventional scheme theory. Moreover, it is precisely these foundational
issues surrounding the vertical and horizontal arrows of the log-theta-lattice that led
naturally to the introduction of the term “inter-universal”.
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Introduction

The present paper forms the fourth and final paper in a series of papers concern-
ing “inter-universal Teichmüller theory”. In the first three papers, [IUTchI],
[IUTchII], and [IUTchIII], of the series, we introduced and studied the theory sur-
rounding the log-theta-lattice [cf. the discussion of [IUTchIII], Introduction],
a highly non-commutative two-dimensional diagram of “miniature models of con-
ventional scheme theory”, called Θ±ellNF-Hodge theaters, that were associated, in
the first paper [IUTchI] of the series, to certain data, called initial Θ-data. This
data includes an elliptic curve EF over a number field F , together with a prime
number l ≥ 5 [cf. [IUTchI], §I1]. Consideration of various properties of the log-
theta-lattice leads naturally to the establishment of multiradial algorithms for
constructing “splitting monoids of LGP-monoids” [cf. [IUTchIII], Theorem
A]. Here, we recall that “multiradial algorithms” [cf. the discussion of the Intro-
ductions to [IUTchII], [IUTchIII]] are algorithms that make sense from the point
of view of an “alien arithmetic holomorphic structure”, i.e., the ring/scheme
structure of a Θ±ellNF-Hodge theater related to a given Θ±ellNF-Hodge theater by
means of a non-ring/scheme-theoretic horizontal arrow of the log-theta-lattice. In
the final portion of [IUTchIII], by applying these multiradial algorithms for split-
ting monoids of LGP-monoids, we obtained estimates for the log-volume of these
LGP-monoids [cf. [IUTchIII], Theorem B]. In the present paper, these estimates
will be applied to verify various diophantine results.

In §1 of the present paper, we start by discussing various elementary estimates
for the log-volume of various tensor products of the modules obtained by applying
the p-adic logarithm to the local units — i.e., in the terminology of [IUTchIII],
“tensor packets of log-shells” [cf. the discussion of [IUTchIII], Introduction] — in
terms of various well-known invariants, such as differents, associated to a mixed-
characteristic nonarchimedean local field [cf. Propositions 1.1, 1.2, 1.3, 1.4]. We
then discuss similar — but technically much simpler! — log-volume estimates in
the case of complex archimedean local fields [cf. Proposition 1.5]. After review-
ing a certain classical estimate concerning the distribution of prime numbers [cf.
Proposition 1.6], as well as some elementary general nonsense concerning weighted
averages [cf. Proposition 1.7] and well-known elementary facts concerning elliptic
curves [cf. Proposition 1.8], we then proceed to compute explicitly, in more elemen-
tary language, the quantity that was estimated in [IUTchIII], Theorem B. These
computations yield a quite strong/explicit diophantine inequality [cf. Theorem
1.10] concerning elliptic curves that are in “sufficiently general position”, so
that one may apply the general theory developed in the first three papers of the
series.

In §2 of the present paper, after reviewing another classical estimate concern-
ing the distribution of prime numbers [cf. Proposition 2.1, (ii)], we then proceed
to apply the theory of [GenEll] to reduce various diophantine results concerning
an arbitrary elliptic curve over a number field to results of the type obtained in
Theorem 1.10 concerning elliptic curves that are in “sufficiently general posi-
tion” [cf. Corollary 2.2]. This reduction allows us to derive the following result
[cf. Corollary 2.3], which constitutes the main application of the “inter-universal
Teichmüller theory” developed in the present series of papers.
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Theorem A. (Diophantine Inequalities) Let X be a smooth, proper, geomet-

rically connected curve over a number field; D ⊆ X a reduced divisor; UX
def
= X\D;

d a positive integer; ε ∈ R>0 a positive real number. Write ωX for the canon-
ical sheaf on X. Suppose that UX is a hyperbolic curve, i.e., that the degree
of the line bundle ωX(D) is positive. Then, relative to the notation of [GenEll]
[reviewed in the discussion preceding Corollary 2.2 of the present paper], one has
an inequality of “bounded discrepancy classes”

htωX(D) � (1 + ε)(log-diffX + log-condD)

of functions on UX(Q)≤d — i.e., the function (1 + ε)(log-diffX + log-condD) −
htωX(D) is bounded below by a constant on UX(Q)≤d [cf. [GenEll], Definition 1.2,
(ii), as well as Remark 2.3.1, (ii), of the present paper].

Thus, Theorem A asserts an inequality concerning the canonical height [i.e.,
“htωX(D)”], the logarithmic different [i.e., “log-diffX”], and the logarithmic conduc-
tor [i.e., “log-condD”] of points of the curve UX valued in number fields whose
extension degree over Q is ≤ d . In particular, the so-called Vojta Conjecture for
hyperbolic curves, the ABC Conjecture, and the Szpiro Conjecture for elliptic
curves all follow as special cases of Theorem A. We refer to [Vjt] for a detailed
exposition of these conjectures.

Finally, in §3, we examine — albeit from an extremely naive/non-expert point
of view! — certain foundational issues underlying the theory of the present se-
ries of papers. Typically in mathematical discussions [i.e., by mathematicians who
are not equipped with a detailed knowledge of the theory of foundations!] — such
as, for instance, the theory developed in the present series of papers! — one de-
fines various “types of mathematical objects” [i.e., such as groups, topological
spaces, or schemes], together with a notion of “morphisms” between two partic-
ular examples of a specific type of mathematical object [i.e., morphisms between
groups, between topological spaces, or between schemes]. Such objects and mor-
phisms [typically] determine a category. On the other hand, if one restricts one’s
attention to such a category, then one must keep in mind the fact that the structure
of the category — i.e., which consists only of a collection of objects and morphisms
satisfying certain properties! — does not include any mention of the various sets
and conditions satisfied by those sets that give rise to the “type of mathematical
object” under consideration. For instance, the data consisting of the underlying
set of a group, the group multiplication law on the group, and the properties sat-
isfied by this group multiplication law cannot be recovered [at least in an a priori
sense!] from the structure of the “category of groups”. Put another way, although
the notion of a “type of mathematical object” may give rise to a “category of such
objects”, the notion of a “type of mathematical object” is much stronger — in the
sense that it involves much more mathematical structure — than the notion of a cat-
egory. Indeed, a given “type of mathematical object” may have a very complicated
internal structure, but may give rise to a category equivalent to a one-morphism
category [i.e., a category with precisely one morphism]; in particular, in such cases,
the structure of the associated category does not retain any information of inter-
est concerning the internal structure of the “type of mathematical object” under
consideration.
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In Definition 3.1, (iii), we formalize this intuitive notion of a “type of mathe-
matical object” by defining the notion of a species as, roughly speaking, a collection
of set-theoretic formulas that gives rise to a category in any given model of set the-
ory [cf. Definition 3.1, (iv)], but, unlike any specific category [e.g., of groups, etc.] is
not confined to any specific model of set theory. In a similar vein, by working
with collections of set-theoretic formulas, one may define a species-theoretic ana-
logue of the notion of a functor, which we refer to as a mutation [cf. Definition 3.3,
(i)]. Given a diagram of mutations, one may then define the notion of a “mutation
that extracts, from the diagram, a certain portion of the types of mathematical
objects that appear in the diagram that is invariant with respect to the mutations
in the diagram”; we refer to such a mutation as a core [cf. Definition 3.3, (v)].

One fundamental example, in the context of the present series of papers, of a
diagram of mutations is the usual set-up of [absolute] anabelian geometry [cf.
Example 3.5 for more details]. That is to say, one begins with the species constituted
by schemes satisfying certain conditions. One then considers the mutation

X � ΠX

that associates to such a scheme X its étale fundamental group ΠX [say, considered
up to inner automorphisms]. Here, it is important to note that the codomain of
this mutation is the species constituted by topological groups [say, considered up
to inner automorphisms] that satisfy certain conditions which do not include any
information concerning how the group is related [for instance, via some sort of
étale fundamental group mutation] to a scheme. The notion of an anabelian
reconstruction algorithm may then be formalized as a mutation that forms a
“mutation-quasi-inverse” to the fundamental group mutation.

Another fundamental example, in the context of the present series of papers, of
a diagram of mutations arises from the Frobenius morphism in positive characteristic
scheme theory [cf. Example 3.6 for more details]. That is to say, one fixes a prime
number p and considers the species constituted by reduced quasi-compact schemes
of characteristic p and quasi-compact morphisms of schemes. One then considers
the mutation that associates

S � S(p)

to such a scheme S the scheme S(p) with the same topological space, but whose
regular functions are given by the p-th powers of the regular functions on the original
scheme. Thus, the domain and codomain of this mutation are given by the same
species. One may also consider a log scheme version of this example, which, at the
level of monoids, corresponds, in essence, to assigning

M � p ·M
to a torsion-free abelian monoid M the submonoid p ·M ⊆ M determined by the
image of multiplication by p. Returning to the case of schemes, one may then
observe that the well-known constructions of the perfection and the étale site

S � Spf; S � Sét

associated to a reduced scheme S of characteristic p give rise to cores of the diagram
obtained by considering iterates of the “Frobenius mutation” just discussed.
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This last example of the Frobenius mutation and the associated core consti-
tuted by the étale site is of particular importance in the context of the present
series of papers in that it forms the “intuitive prototype” that underlies the theory
of the vertical and horizontal lines of the log-theta-lattice [cf. the discussion
of Remark 3.6.1, (i)]. One notable aspect of this example is the [evident!] fact
that the domain and codomain of the Frobenius mutation are given by the same
species. That is to say, despite the fact that in the construction of the scheme
S(p) [cf. the notation of the preceding paragraph] from the scheme S, the scheme
S(p) is “subordinate” to the scheme S, the domain and codomain species of the
resulting Frobenius mutation coincide, hence, in particular, are on a par with one
another. This sort of situation served, for the author, as a sort of model for the
log- and Θ×μ

LGP-links of the log-theta-lattice, which may be formulated as muta-
tions between the species constituted by the notion of a Θ±ellNF-Hodge theater.
That is to say, although in the construction of either the log- or the Θ×μ

LGP-link, the
domain and codomain Θ±ellNF-Hodge theaters are by no means on a “par” with
one another, the domain and codomain Θ±ellNF-Hodge theaters of the resulting
log-/Θ×μ

LGP-links are regarded as objects of the same species, hence, in particular,
completely on a par with one another. This sort of “relativization” of distinct
models of conventional scheme theory over Z via the notion of a Θ±ellNF-Hodge
theater [cf. Fig. I.1 below; the discussion of “gluing together” such models of con-
ventional scheme theory in [IUTchI], §I2] is one of the most characteristic features
of the theory developed in the present series of papers and, in particular, lies [tauto-
logically!] outside the framework of conventional scheme theory over Z. That is to
say, in the framework of conventional scheme theory over Z, if one starts out with
schemes over Z and constructs from them, say, by means of geometric objects such
as the theta function on a Tate curve, some sort of Frobenioid that is isomorphic to
a Frobenioid associated to Z, then — unlike, for instance, the case of the Frobenius
morphism in positive characteristic scheme theory —

there is no way, within the framework of conventional scheme theory, to
treat the newly constructed Frobenioid “as if it is the Frobenioid associated
to Z, relative to some new version/model of conventional scheme theory”.

. . .

non-
scheme-

—————
theoretic
link

one
model of
conven-
tional
scheme
theory
over Z

non-
scheme-

—————
theoretic
link

another
model of
conven-
tional
scheme
theory
over Z

non-
scheme-

—————
theoretic
link

. . .

Fig. I.1: Relativized models of conventional scheme theory over Z

If, moreover, one thinks of Z as being constructed, in the usual way, via ax-
iomatic set theory, then one may interpret the “absolute” — i.e., “tautologically
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unrelativizable” — nature of conventional scheme theory over Z at a purely set-
theoretic level. Indeed, from the point of view of the “∈-structure” of axiomatic set
theory, there is no way to treat sets constructed at distinct levels of this ∈-structure
as being on a par with one another. On the other hand, if one focuses not on
the level of the ∈-structure to which a set belongs, but rather on species, then the
notion of a species allows one to relate — i.e., to treat on a par with one another —
objects belonging to the species that arise from sets constructed at distinct levels
of the ∈-structure. That is to say,

the notion of a species allows one to “simulate ∈-loops” without vio-
lating the axiom of foundation of axiomatic set theory

— cf. the discussion of Remark 3.3.1, (i).

As one constructs sets at new levels of the ∈-structure of some model of ax-
iomatic set theory — e.g., as one travels along vertical or horizontal lines of the
log-theta-lattice! — one typically encounters new schemes, which give rise to new
Galois categories, hence to new Galois or étale fundamental groups, which may
only be constructed if one allows oneself to consider new basepoints, relative to new
universes. In particular, one must continue to extend the universe, i.e., to modify
the model of set theory, relative to which one works. Here, we recall in passing
that such “extensions of universe” are possible on account of an existence axiom
concerning universes, which is apparently attributed to the “Grothendieck school”
and, moreover, cannot, apparently, be obtained as a consequence of the conven-
tional ZFC axioms of axiomatic set theory [cf. the discussion at the beginning of
§3 for more details]. On the other hand, ultimately in the present series of papers
[cf. the discussion of [IUTchIII], Introduction], we wish to obtain algorithms for
constructing various objects that arise in the context of the new schemes/universes
discussed above — i.e., at distant Θ±ellNF-Hodge theaters of the log-theta-lattice
— that make sense from the point of view of the original schemes/universes that
occurred at the outset of the discussion. Again, the fundamental tool that makes
this possible, i.e., that allows one to express constructions in the new universes in
terms that makes sense in the original universe is precisely

the species-theoretic formulation — i.e., the formulation via set-
theoretic formulas that do not depend on particular choices invoked
in particular universes — of the constructions of interest

— cf. the discussion of Remarks 3.1.2, 3.1.3, 3.1.4, 3.1.5, 3.6.2, 3.6.3. This is
the point of view that gave rise to the term “inter-universal”. At a more con-
crete level, this “inter-universal” contact between constructions in distant models
of conventional scheme theory in the log-theta-lattice is realized by considering [the
étale-like structures given by] the various Galois or étale fundamental groups that
occur as [the “type of mathematical object”, i.e., species constituted by] abstract
topological groups [cf. the discussion of Remark 3.6.3, (i); [IUTchI], §I3]. These
abstract topological groups give rise to vertical or horizontal cores of the log-
theta-lattice [cf. the discussion of [IUTchIII], Introduction; [IUTchIII], Theorem
1.5, (i), (ii)]. Moreover, once one obtains cores that are sufficiently “nondegener-
ate”, or “rich in structure”, so as to serve as containers for the non-coric portions of
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the various mutations [e.g., vertical and horizontal arrows of the log-theta-lattice]
under consideration, then one may construct the desired algorithms, or descrip-
tions, of these non-coric portions in terms of coric containers, up to certain
relatively mild indeterminacies [i.e., which reflect the non-coric nature of these
non-coric portions!] — cf. the illustration of this sort of situation given in Fig. I.2
below; Remark 3.3.1, (iii); Remark 3.6.1, (ii). In the context of the log-theta-lattice,
this is precisely the sort of situation that was achieved in [IUTchIII], Theorem A
[cf. the discussion of [IUTchIII], Introduction].

. . .
� •

• � • � •
• � • � •

• �
. . .

?
•

Fig. I.2: A coric container underlying a sequence of mutations

In the context of the above discussion of set-theoretic aspects of the theory
developed in the present series of papers, it is of interest to note the following
observation, relative to the analogy between the theory of the present series of
papers and p-adic Teichmüller theory [cf. the discussion of [IUTchI], §I4]. If,
instead of working species-theoretically, one attempts to document all of the possible
choices that occur in various newly introduced universes that occur in a construc-
tion, then one finds that one is obliged to work with sets, such as sets obtained via
set-theoretic exponentiation, of very large cardinality. Such sets of large
cardinality are reminiscent of the exponentially large denominators that occur
if one attempts to p-adically formally integrate an arbitrary connection as opposed
to a canonical crystalline connection of the sort that occurs in the context of
the canonical liftings of p-adic Teichmüller theory [cf. the discussion of Remark
3.6.2, (iii)]. In this context, it is of interest to recall the computations of [Finot],
which assert, roughly speaking, that the canonical liftings of p-adic Teichmüller
theory may, in certain cases, be characterized as liftings “of minimal complexity”
in the sense that their Witt vector coordinates are given by polynomials of minimal
degree.

Finally, we observe that although, in the above discussion, we concentrated on
the similarities, from an “inter-universal” point of view, between the vertical and
horizontal arrows of the log-theta-lattice, there is one important difference between
these vertical and horizontal arrows: namely,

· whereas the copies of the full arithmetic fundamental group — i.e., in
particular, the copies of the geometric fundamental group — on either
side of a vertical arrow are identified with one another,

· in the case of a horizontal arrow, only the Galois groups of the local
base fields on either side of the arrow are identified with one another
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— cf. the discussion of Remark 3.6.3, (ii). One way to understand the reason
for this difference is as follows. In the case of the vertical arrows — i.e., the log-
links, which, in essence, amount to the various local p-adic logarithms — in order
to construct the log-link, it is necessary to make use, in an essential way, of the
local ring structures at v ∈ V [cf. the discussion of [IUTchIII], Definition 1.1,
(i), (ii)], which may only be reconstructed from the full arithmetic fundamental

group. By contrast, in order to construct the horizontal arrows — i.e., the Θ×μ
LGP-

links — this local ring structure is unnecessary. On the other hand, in order to
construct the horizontal arrows, it is necessary to work with structures that, up
to isomorphism, are common to both the domain and the codomain of the arrow.
Since the construction of the domain of the Θ×μ

LGP-link depends, in an essential

way, on the Gaussian monoids, i.e., on the labels ∈ F�
l for the theta values,

which are constructed from the geometric fundamental group, while the codomain
only involves monoids arising from the local q-parameters “q

v
” [for v ∈ V

bad], which

are constructed in a fashion that is independent of these labels, in order to obtain
an isomorphism between structures arising from the domain and codomain, it is
necessary to restrict one’s attention to the Galois groups of the local base fields,
which are free of any dependence on these labels.

Acknowledgements:

The research discussed in the present paper profited enormously from the gen-
erous support that the author received from the Research Institute for Mathematical
Sciences, a Joint Usage/Research Center located in Kyoto University. At a personal
level, I would like to thank Fumiharu Kato, Akio Tamagawa, Go Yamashita, Mo-
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Notations and Conventions:

We shall continue to use the “Notations and Conventions” of [IUTchI], §0.
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Section 1: Log-volume Estimates

In the present §1, we perform various elementary local computations con-
cerning nonarchimedean and archimedean local fields which allow us to obtainmore
explicit versions [cf. Theorem 1.10 below] of the log-volume estimates for Θ-
pilot objects obtained in [IUTchIII], Corollary 3.12.

In the following, if λ ∈ R, then we shall write

�λ� (respectively, �λ	)

for the smallest (respectively, largest) n ∈ Z such that n ≥ λ (respectively, n ≤ λ).
Also, we shall write “log(−)” for the natural logarithm of a positive real number.

Proposition 1.1. (Multiple Tensor Products and Differents) Let p be
a prime number, I a finite set of cardinality ≥ 2, Qp an algebraic closure of Qp.

Write R ⊆ Qp for the ring of integers of Qp and ord : Q
×
p → Q for the natural

p-adic valuation on Qp, normalized so that ord(p) = 1; for λ ∈ Q, we shall write

pλ for “some” [unspecified] element of Qp such that ord(pλ) = λ. For i ∈ I, let

ki ⊆ Qp be a finite extension of Qp; write Ri
def
= Oki

= R
⋂
ki for the ring of

integers of ki and di ∈ Q≥0 for the order [i.e., “ord(−)”] of any generator of the
different ideal of Ri over Zp. Also, for any nonempty subset E ⊆ I, let us write

RE
def
=

⊗
i∈E

Ri; dE
def
=

∑
i∈E

di

— where the tensor product is over Zp. Fix an element ∗ ∈ I; write I∗ def
= I \ {∗}.

Then
pdI∗ · (RI)

∼ ⊆ RI ⊆ (RI)
∼

— where we write “(−)∼” for the normalization of the [reduced] ring in paren-
theses in its ring of fractions, and we observe that it follows immediately from the
definition of the “normalization” that the notation on the left-hand side of the first
inclusion of the above display is well-defined for suitable “pdI∗” [such as products
of elements pdi ∈ Ri, for i ∈ I∗] and independent of the choice of such suitable
“pdI∗”.

Proof. Let us regard RI as an R∗-algebra in the evident fashion. It is immediate
from the definitions that RI ⊆ (RI)

∼. Now observe that

R⊗R∗ RI ⊆ R⊗R∗ (RI)
∼ ⊆ (R⊗R∗ RI)

∼

— where (R⊗R∗ RI)
∼ decomposes as a direct sum of finitely many copies of R. In

particular, one verifies immediately, in light of the fact the R is faithfully flat over
R∗, that to complete the proof of Proposition 1.1, it suffices to verify that

pdI∗ · (R⊗R∗ RI)
∼ ⊆ R⊗R∗ RI
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— where we observe that it follows immediately from the definition of the “nor-
malization” that the notation on the left-hand side of the inclusion of the above
display is well-defined and independent of the choice of “pdI∗”. On the other hand,
it follows immediately from induction on the cardinality of I that to verify this last
inclusion, it suffices to verify the inclusion in the case where I is of cardinality two.
But in this case, the desired inclusion follows immediately from the definition of
the different ideal. This completes the proof of Proposition 1.1. ©

Proposition 1.2. (Differents and Logarithms) We continue to use the
notation of Proposition 1.1. For i ∈ I, write ei for the ramification index of ki
over Qp;

ai
def
=

1

ei
· � ei

p− 2
� if p > 2, ai

def
= 2 if p = 2; bi

def
= � log(p · ei/(p− 1))

log(p)
	 − 1

ei
.

Thus,

if p > 2 and ei ≤ p− 2, then ai =
1

ei
= −bi.

For any nonempty subset E ⊆ I, let us write

logp(R
×
E)

def
=

⊗
i∈E

logp(R
×
i ); aE

def
=

∑
i∈E

ai; bE
def
=

∑
i∈E

bi

— where the tensor product is over Zp; we write “logp(−)” for the p-adic logarithm.

For λ ∈ 1
ei

·Z, we shall write pλ ·Ri for the fractional ideal of Ri generated by any

element “pλ” of ki such that ord(pλ) = λ. Let

φ : logp(R
×
I )⊗Qp

∼→ logp(R
×
I )⊗Qp

be an automorphism of the finite dimensional Qp-vector space logp(R
×
I )⊗Qp that

induces an automorphism of the submodule logp(R
×
I ). Then:

(i) We have:

pai ·Ri ⊆ logp(R
×
i ) ⊆ p−bi ·Ri

— where the “⊆’s” are equalities when p > 2 and ei ≤ p− 2.

(ii) We have:

φ(pλ · (RI)
∼) ⊆ p�λ−dI−aI� · logp(R×

I )

⊆ p�λ−dI−aI�−bI · (RI)
∼

for any λ ∈ 1
ei

· Z, i ∈ I. [Here, we observe that, just as in Proposition 1.1, it
follows immediately from the definition of the “normalization” that the notation of
the above display is well-defined and independent of the various choices involved.]
In particular, φ((RI)

∼) ⊆ p−	dI+aI
 · logp(R×
I ) ⊆ p−	dI+aI
−bI · (RI)

∼.
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(iii) Suppose that p > 2, and that ei ≤ p− 2 for all i ∈ I. Then we have:

φ(pλ · (RI)
∼) ⊆ pλ−dI−1 · (RI)

∼

for any λ ∈ 1
ei

· Z, i ∈ I. [Here, we observe that, just as in Proposition 1.1, it
follows immediately from the definition of the “normalization” that the notation of
the above display is well-defined and independent of the various choices involved.]
In particular, φ((RI)

∼) ⊆ p−dI−1 · (RI)
∼.

(iv) If p > 2 and ei = 1 for all i ∈ I, then φ((RI)
∼) ⊆ (RI)

∼.

Proof. Since ai > 1
p−1 ,

p
bi+

1
ei

ei
> 1

p−1 [cf. the definition of “�−�”, “�−	”!], asser-
tion (i) follows immediately from the well-known theory of the p-adic logarithm and
exponential maps [cf., e.g., [Kobl], p. 81]. Next, we consider assertion (ii). Observe
that it follows from the first displayed inclusion [of RI-modules!] of Proposition 1.1
that

pdI+aI · (RI)
∼ ⊆

⊗
i∈I

pai ·Ri

(
⊆ RI =

⊗
i∈I

Ri

)
and hence that

pλ · (RI)
∼ ⊆ pλ−dI−aI · pdI+aI · (RI)

∼

⊆ p�λ−dI−aI� · pdI+aI · (RI)
∼

⊆ p�λ−dI−aI� · logp(R×
I ) ⊆ p�λ−dI−aI�−bI · (RI)

∼

—where, in the passage to the third and fourth inclusions following “pλ ·(RI)
∼”, we

apply assertion (i). [Here, we observe that, just as in Proposition 1.1, it follows im-
mediately from the definition of the “normalization” that the notation of the above
two displays is well-defined and independent of the various choices involved.] Thus,
assertion (ii) follows immediately from the fact that φ induces an automorphism of
the submodule logp(R

×
I ). Assertion (iii) follows from assertion (ii), together with

the fact that if p > 2 and ei ≤ p − 2 for all i ∈ I, then we have aI = −bI , which
implies that �λ− dI − aI	 − bI ≥ λ− dI − aI − 1− bI ≥ λ− dI − 1. Assertion (iv)
follows from assertion (ii), together with the fact that if p > 2 and ei = 1 for all
i ∈ I, then we have dI = 0, aI = −bI ∈ Z. This completes the proof of Proposition
1.2. ©

Proposition 1.3. (Estimates of Differents) We continue to use the notation
of Proposition 1.2. Suppose that k0 ⊆ ki is a subfield that contains Qp. Write

R0
def
= Ok0 for the ring of integers of k0, d0 for the order [i.e., “ord(−)”] of any

generator of the different ideal of R0 over Zp, e0 for the ramification index of k0

over Qp, ei/0
def
= ei/e0 (∈ Z), [ki : k0] for the degree of the extension ki/k0, ni

for the unique nonnegative integer such that [ki : k0]/p
ni is an integer prime to p.

Then:

(i) We have:

di ≥ d0 + (ei/0 − 1)/(ei/0 · e0) = d0 + (ei/0 − 1)/ei
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— where the “≥” is an equality if ki is tamely ramified over k0.

(ii) Suppose that ki is a finite Galois extension of a subfield k1 ⊆ ki such that
k0 ⊆ k1, and k1 is tamely ramified over k0. Then we have: di ≤ d0 + ni + 1/e0.

Proof. By replacing k0 by an unramified extension of k0 contained in ki, we may
assume without loss of generality in the following discussion that ki is a totally
ramified extension of k0. First, we consider assertion (i). Let π0 be a uniformizer of

R0. Then there exists an isomorphism of R0-algebras R0[x]/(f(x))
∼→ Ri, where

f(x) ∈ R0[x] is a monic polynomial which is ≡ xei/0 (mod π0), that maps x �→ πi

for some uniformizer πi of Ri. Thus, the different di may be computed as follows:

di − d0 = ord(f ′(πi)) ≥ min(ord(π0), ord(ei/0 · πei/0−1

i ))

≥ min
( 1

e0
, ord(π

ei/0−1

i )
)

= min
( 1

e0
,
ei/0 − 1

ei/0 · e0
)

=
ei/0 − 1

ei

— where, for λ, μ ∈ R such that λ ≥ μ, we define min(λ, μ)
def
= μ. When ki is

tamely ramified over k0, one verifies immediately that the inequalities of the above
display are, in fact, equalities. This completes the proof of assertion (i).

Next, we consider assertion (ii). We apply induction on ni. Since assertion (ii)
follows immediately from assertion (i) when ni = 0, we may assume that ni ≥ 1, and
that assertion (ii) has been verified for smaller “ni”. By replacing k1 by some tamely
ramified extension of k1 contained in ki, we may assume without loss of generality
that Gal(ki/k1) is a p-group. Since p-groups are solvable, and ki is a totally ramified
extension of k0, it follows that there exists a subextension k1 ⊆ k∗ ⊆ ki such that
ki/k∗ and k∗/k1 are Galois extensions of degree p and pni−1, respectively. Write

R∗
def
= Ok∗ for the ring of integers of k∗, d∗ for the order [i.e., “ord(−)”] of any

generator of the different ideal of R∗ over Zp, and e∗ for the ramification index of
k∗ over Qp. Thus, by the induction hypothesis, it follows that d∗ ≤ d0+ni−1+1/e0.
To verify that di ≤ d0 + ni + 1/e0, it suffices to verify that di ≤ d0 + ni + 1/e0 + ε
for any positive real number ε. Thus, let us fix a positive real number ε. Then
by possibly enlarging ki and k1, we may also assume without loss of generality
that the tamely ramified extension k1 of k0 contains a primitive p-th root of unity,
and, moreover, that the ramification index e1 of k1 over Qp satisfies the inequality
e1 ≥ p/ε [so e∗ ≥ e1 ≥ p/ε]. Thus, ki is a Kummer extension of k∗. In particular,
there exists an inclusion of R∗-algebras R∗[x]/(f(x)) ↪→ Ri, where f(x) ∈ R∗[x]
is a monic polynomial which is of the form f(x) = xp − �∗ for some element �∗
of R∗ satisfying the estimates 0 ≤ ord(�∗) ≤ p−1

e∗
, that maps x �→ �i for some

element �i of Ri satisfying the estimates 0 ≤ ord(�i) ≤ p−1
p·e∗ . Now we compute:

di ≤ ord(f ′(�i)) + d∗ ≤ ord(p ·�p−1
i ) + d0 + ni − 1 + 1/e0

= (p− 1) · ord(�i) + d0 + ni + 1/e0 ≤ (p− 1)2

p · e∗ + d0 + ni + 1/e0

≤ p

e∗
+ d0 + ni + 1/e0 ≤ d0 + ni + 1/e0 + ε

— thus completing the proof of assertion (ii). ©
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Remark 1.3.1. Similar estimates to those discussed in Proposition 1.3 may be
found in [Ih], Lemma A.

Proposition 1.4. (Nonarchimedean Normalized Log-volume Estimates)
We continue to use the notation of Proposition 1.2. Also, for i ∈ I, write Rμ

i ⊆ R×
i

for the torsion subgroup of R×
i , R×μ

i
def
= R×

i /R
μ
i , pfi for the cardinality of the

residue field of ki, and pmi for the order of the p-primary component of Rμ
i . Thus,

the order of Rμ
i is equal to pmi · (pfi − 1). Then:

(i) The log-volumes constructed in [AbsTopIII], Proposition 5.7, (i), on the
various finite extensions of Qp contained in Qp may be suitably normalized [i.e.,
by dividing by the degree of the finite extension] so as to yield a notion of log-volume

μlog(−)

defined on compact open subsets of finite extensions of Qp contained in Qp, valued

in R, and normalized so that μlog(Ri) = 0, μlog(p · Ri) = −log(p), for each i ∈ I.
Moreover, by applying the fact that tensor products of finitely many finite extensions
of Qp over Zp decompose, naturally, as direct sums of finitely many finite extensions
of Qp, we obtain a notion of log-volume — which, by abuse of notation, we shall
also denote by “μlog(−)” — defined on compact open subsets of such tensor
products, valued in R, and normalized so that μlog((RE)

∼) = 0, μlog(p · (RE)
∼) =

−log(p), for any nonempty set E ⊆ I.

(ii) We have:

μlog(logp(R
×
i )) = −

( 1

ei
+

mi

eifi

)
· log(p)

[cf. [AbsTopIII], Proposition 5.8, (iii)].

(iii) Let I∗ ⊆ I be a subset such that for each i ∈ I \ I∗, it holds that p− 2 ≥
ei (≥ 1). Then for any λ ∈ 1

e
i†

· Z, i† ∈ I, we have inclusions φ(pλ · (RI)
∼) ⊆

p�λ−dI−aI� · logp(R×
I ) ⊆ p�λ−dI−aI�−bI · (RI)

∼ and inequalities

μlog(p�λ−dI−aI� · logp(R×
I )) ≤

(
− λ+ dI + 1 + 4 · |I∗|/p

)
· log(p);

μlog(p�λ−dI−aI�−bI · (RI)
∼) ≤

(
− λ+ dI + 1

)
· log(p) +

∑
i∈I∗

{3 + log(ei)}

— where we write “|(−)|” for the cardinality of the set “(−)”. Moreover, dI+aI ≥
|I| if p > 2; dI + aI ≥ 2 · |I| if p = 2.

(iv) If p > 2 and ei = 1 for all i ∈ I, then φ((RI)
∼) ⊆ (RI)

∼, and
μlog((RI)

∼) = 0.

Proof. Assertion (i) follows immediately from the definitions. Next, we consider

assertion (ii). We begin by observing that every compact open subset of R×μ
i may

be covered by a finite collection of compact open subsets of R×μ
i that arise as
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images of compact open subsets of R×
i that map injectively to R×μ

i . In particular,
by applying this observation, we conclude that the log-volume on R×

i determines,

in a natural way, a log-volume on the quotient R×
i � R×μ

i . Moreover, in light of
the compatibility of the log-volume with “logp(−)” [cf. [AbsTopIII], Proposition

5.7, (i), (c)], it follows immediately that μlog(logp(R
×
i )) = μlog(R×μ

i ). Thus, it

suffices to compute ei · fi · μlog(R×μ
i ) = ei · fi · μlog(R×

i )− log(pmi · (pfi − 1)). On
the other hand, it follows immediately from the basic properties of the log-volume
[cf. [AbsTopIII], Proposition 5.7, (i), (a)] that ei · fi · μlog(R×

i ) = log(1− p−fi), so

ei · fi · μlog(R×μ
i ) = −(fi + mi) · log(p), as desired. This completes the proof of

assertion (ii).

The inclusions of assertion (iii) follow immediately from Proposition 1.2, (ii).
When p = 2, the fact that dI +aI ≥ 2 · |I| follows immediately from the definition
of “di” and “ai” in Propositions 1.1, 1.2. When p > 2, it follows immediately from
the definition of “ai” in Proposition 1.2 that ai ≥ 1/ei, for all i ∈ I; thus, since
di ≥ (ei − 1)/ei for all i ∈ I [cf. Proposition 1.3, (i)], we conclude that di + ai ≥ 1
for all i ∈ I, and hence that dI + aI ≥ |I|, as asserted in the statement of
assertion (iii). Next, let us observe that 1

p−2 ≤ 4
p for p ≥ 3; p

p−1 ≤ 2 for p ≥ 2;
2
p ≤ 1

log(p) for p ≥ 2. Thus, it follows immediately from the definition of ai, bi in

Proposition 1.2 that ai − 1
ei

≤ 4
p ≤ 2

log(p) , (bi +
1
ei
) · log(p) ≤ log(2ei) ≤ 1 + log(ei)

for i ∈ I; ai =
1
ei

= −bi for i ∈ I \ I∗. On the other hand, by assertion (i), we have

μlog(RI) ≤ μlog((RI)
∼) = 0; by assertion (ii), we have μlog(logp(R

×
i )) ≤ − 1

ei
·log(p).

Now we compute:

μlog(p�λ−dI−aI� · logp(R×
I )) ≤

(
− λ+ dI + aI + 1

)
· log(p) + μlog(logp(R

×
I ))

=
(
− λ+ dI + aI + 1

)
· log(p)

+
{∑

i∈I

μlog(logp(R
×
i ))
}

+ μlog(RI)

≤
{
− λ+ dI + 1 +

∑
i∈I

(ai − 1

ei
)
}
· log(p)

≤
(
− λ+ dI + 1 + 4 · |I∗|/p

)
· log(p);

μlog(p�λ−dI−aI�−bI · (RI)
∼) ≤

(
− λ+ dI + aI + bI + 1

)
· log(p)

≤
(
− λ+ dI + 1

)
· log(p) +

∑
i∈I∗

{3 + log(ei)}

— thus completing the proof of assertion (iii). Assertion (iv) follows immediately
from assertion (i) and Proposition 1.2, (iv). ©

Proposition 1.5. (Archimedean Metric Estimates) In the following, we
shall regard the complex archimedean field C as being equipped with its standard
Hermitian metric, i.e., the metric determined by the complex norm. Let us refer
to as the primitive automorphisms of C the group of automorphisms [of order
8] of the underlying metrized real vector space of C generated by the operations of
complex conjugation and multiplication by ±1 or ±√−1.
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(i) (Direct Sum vs. Tensor Product Metrics) The metric on C deter-
mines a tensor product metric on C⊗RC, as well as a direct sum metric on C⊕C.
Then, relative to these metrics, any isomorphism of topological rings [i.e.,
arising from the Chinese remainder theorem]

C⊗R C
∼→ C⊕ C

is compatible with these metrics, up to a factor of 2, i.e., the metric on the right-
hand side corresponds to 2 times the metric on the left-hand side. [Thus, lengths

differ by a factor of
√
2.]

(ii) (Direct Sum vs. Tensor Product Automorphisms) Relative to the
notation of (i), the direct sum decomposition C ⊕ C, together with its Her-
mitian metric, is preserved, relative to the displayed isomorphism of (i), by the
automorphisms of C ⊗R C induced by the various primitive automorphisms of
the two copies of “C” that appear in the tensor product C⊗R C.

(iii) (Direct Sums and Tensor Products of Multiple Copies) Let I,
V be nonempty finite sets, whose cardinalities we denote by |I|, |V |, respectively.
Write

M
def
=

⊕
v∈V

Cv

for the direct sum of copies Cv
def
= C of C labeled by v ∈ V , which we regard as

equipped with the direct sum metric, and

MI
def
=

⊗
i∈I

Mi

for the tensor product over R of copies Mi
def
= M of M labeled by i ∈ I, which

we regard as equipped with the tensor product metric [cf. the constructions of
[IUTchIII], Proposition 3.2, (ii)]. Then the topological ring structure on each Cv

determines a topological ring structure on MI with respect to which MI admits
a unique direct sum decomposition as a direct sum of

2|I|−1 · |V ||I|

copies of C [cf. [IUTchIII], Proposition 3.1, (i)]. The direct sum metric on MI

— i.e., the metric determined by the natural metrics on these copies of C — is
equal to

2|I|−1

times the original tensor product metric on MI . Write

BI ⊆ MI

for the “integral structure” [cf. the constructions of [IUTchIII], Proposition 3.1,
(ii)] given by the direct product of the unit balls of the copies of C that occur in
the direct sum decomposition of MI . Then the tensor product metric on MI , the
direct sum decomposition of MI , the direct sum metric on MI , and the integral
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structure BI ⊆ MI are preserved by the automorphisms of MI induced by the
various primitive automorphisms of the direct summands “Cv” that appear in
the factors “Mi” of the tensor product MI .

(iv) (Tensor Product of Vectors of a Given Length) Suppose that we are
in the situation of (iii). Fix λ ∈ R>0. Then

MI �
⊗
i∈I

mi ∈ λ|I| ·BI

for any collection of elements {mi ∈ Mi}i∈I such that the component of mi in each
direct summand “Cv” of Mi is of length λ.

Proof. Assertions (i) and (ii) are discussed in [IUTchIII], Remark 3.9.1, (ii), and
may be verified by means of routine and elementary arguments. Assertion (iii)
follows immediately from assertions (i) and (ii). Assertion (iv) follows immediately
from the various definitions involved. ©

Proposition 1.6. (The Prime Number Theorem) If n is a positive integer,
then let us write pn for the n-th smallest prime number. [Thus, p1 = 2, p2 = 3,
and so on.] Then there exists an integer n0 such that it holds that

n ≤ 4pn

3·log(pn)

for all n ≥ n0. In particular, there exists a positive real number ηprm such that∑
p≤η

1 ≤ 4η
3·log(η)

— where the sum ranges over the prime numbers p ≤ η — for all positive real
η ≥ ηprm.

Proof. Relative to our notation, the Prime Number Theorem [cf., e.g., [DmMn],
§3.10] implies that

lim
n→∞

n · log(pn)
pn

= 1

— i.e., in particular, that for some positive integer n0, it holds that

log(pn)

pn
≤ 4

3
· 1
n

for all n ≥ n0. The final portion of Proposition 1.6 follows formally. ©

Proposition 1.7. (Weighted Averages) Let E be a nonempty finite set, n a
positive integer. For e ∈ E, let λe ∈ R>0, βe ∈ R. Then, for any i = 1, . . . , n, we
have: ∑

�e∈En

β�e · λΠ�e∑
�e∈En

λΠ�e

=

∑
�e∈En

n · βei · λΠ�e∑
�e∈En

λΠ�e

= n · βavg
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— where we write βavg
def
= βE/λE, βE

def
=
∑

e∈E βe · λe, λE
def
=
∑

e∈E λe,

β�e
def
=

n∑
j=1

βej ; λΠ�e
def
=

n∏
j=1

λej

for any n-tuple �e = (e1, . . . , en) ∈ En of elements of E.

Proof. We begin by observing that

λn
E =

∑
�e∈En

λΠ�e ; βE · λn−1
E =

∑
�e∈En

βei · λΠ�e

for any i = 1, . . . , n. Thus, summing over i, we obtain that

n · βE · λn−1
E =

∑
�e∈En

β�e · λΠ�e =
∑
�e∈En

n · βei · λΠ�e

and hence that

n · βavg = n · βE · λn−1
E /λn

E =
( ∑

�e∈En

β�e · λΠ�e

)
·
( ∑

�e∈En

λΠ�e

)−1

=
( ∑

�e∈En

n · βei · λΠ�e

)
·
( ∑

�e∈En

λΠ�e

)−1

as desired. ©

Remark 1.7.1. In Theorem 1.10 below, we shall apply Proposition 1.7 to com-
pute various packet-normalized log-volumes of the sort discussed in [IUTchIII],
Proposition 3.9, (i) — i.e., log-volumes normalized by means of the normalized
weights discussed in [IUTchIII], Remark 3.1.1, (ii). Here, we recall that the nor-
malized weights discussed in [IUTchIII], Remark 3.1.1, (ii), were computed relative
to the non-normalized log-volumes of [AbsTopIII], Proposition 5.8, (iii), (vi) [cf.
the discussion of [IUTchIII], Remark 3.1.1, (ii); [IUTchI], Example 3.5, (iii)]. By
contrast, in the discussion of the present §1, our computations are performed rela-
tive to normalized log-volumes as discussed in Proposition 1.4, (i). In particular, it
follows that the weights [Kv : (Fmod)v]

−1, where V � v | v ∈ Vmod, of the dis-
cussion of [IUTchIII], Remark 3.1.1, (ii), must be replaced — i.e., when one works
with normalized log-volumes as in Proposition 1.4, (i) — by the weights

[Kv : QvQ
] · [Kv : (Fmod)v]

−1 = [(Fmod)v : QvQ
]

— where Vmod � v | vQ ∈ VQ. This means that the normalized weights of the
final display of [IUTchIII], Remark 3.1.1, (ii), must be replaced, when one works
with normalized log-volumes as in Proposition 1.4, (i), by the normalized weights( ∏

α∈A

[(Fmod)vα : QvQ
]
)

∑
{wα}α∈A

( ∏
α∈A

[(Fmod)wα : QvQ ]
)
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— where the sum is over all collections {wα}α∈A of [not necessarily distinct!] ele-
ments wα ∈ Vmod lying over vQ and indexed by α ∈ A. Thus, in summary, when
one works with normalized log-volumes as in Proposition 1.4, (i), the appropriate
normalized weights are given by the expressions

λΠ�e †∑
�e∈En

λΠ�e

[where �e † ∈ En] that appear in Proposition 1.7. Here, one takes “E” to be the set

of elements of V
∼→ Vmod lying over a fixed vQ; one takes “n” to be the cardinality

of A, so that one can write A = {α1, . . . , αn} [where the αi are distinct]; if e ∈ E
corresponds to v ∈ V, v ∈ Vmod, then one takes

“λe”
def
= [(Fmod)v : QvQ ] ∈ R>0

and “βe” to be a normalized log-volume of some compact open subset of Kv.

Before proceeding, we review some well-known elementary facts concerning
elliptic curves. In the following, we shall write Mell for the moduli stack of elliptic
curves over Z and

Mell ⊆ Mell

for the natural compactification of Mell, i.e., the moduli stack of one-dimensional

semi-abelian schemes over Z. Also, ifR is a Z-algebra, then we shall write (Mell)R
def
=

Mell ×Z R, (Mell)R
def
= Mell ×Z R.

Proposition 1.8. (Torsion Points of Elliptic Curves) Let k be a perfect

field, k an algebraic closure of k. Write Gk
def
= Gal(k/k).

(i) (“Serre’s Criterion”) Let l ≥ 3 be a prime number that is invertible
in k; suppose that k = k. Let A be an abelian variety over k, equipped with a
polarization λ. Write A[l] ⊆ A(k) for the group of l-torsion points of A(k). Then
the natural map

φ : Autk(A, λ) → Aut(A[l])

from the group of automorphisms of the polarized abelian variety (A, λ) over k to
the group of automorphisms of the abelian group A[l] is injective.

(ii) Let Ek be an elliptic curve over k with origin εE ∈ E(k). For n a positive

integer, write Ek[n] ⊆ Ek(k) for the module of n-torsion points of Ek(k) and

Autk(Ek) ⊆ Autk(Ek)

for the respective groups of εE-preserving automorphisms of the k-scheme Ek and
the k-scheme Ek. Then we have a natural exact sequence

1 −→ Autk(Ek) −→ Autk(Ek) −→ Gk
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— where the image GE ⊆ Gk of the homomorphism Autk(Ek) → Gk is open —
and a natural representation

ρn : Autk(Ek) → Aut(Ek[n])

on the n-torsion points of Ek. The finite extension kE of k determined by GE is
the minimal field of definition of Ek, i.e., the field generated over k by the j-
invariant of Ek. Finally, if H ⊆ Gk is any closed subgroup, which corresponds to
an extension kH of k, then the datum of a model of Ek over kH [i.e., descent data

for Ek from k to kH ] is equivalent to the datum of a section of the homomorphism
Autk(Ek) → Gk over H. In particular, the homomorphism Autk(Ek) → Gk admits
a section over GE.

(iii) In the situation of (ii), suppose further that Autk(Ek) = {±1}. Then the
representation ρ2 factors through GE and hence defines a natural representa-
tion GE → Aut(Ek[2]).

(iv) In the situation of (ii), suppose further that l ≥ 3 is a prime number
that is invertible in k, and that Ek descends to elliptic curves E′

k and E′′
k over k,

all of whose l-torsion points are rational over k. Then E′
k is isomorphic to E′′

k

over k.

(v) In the situation of (ii), suppose further that k is a complete discrete
valuation field with ring of integers Ok, that l ≥ 3 is a prime number that is
invertible in Ok, and that Ek descends to an elliptic curve Ek over k, all of whose
l-torsion points are rational over k. Then Ek has semi-stable reduction over
Ok [i.e., extends to a semi-abelian scheme over Ok].

(vi) In the situation of (iii), suppose further that 2 is invertible in k, that
GE = Gk, and that the representation GE → Aut(Ek[2]) is trivial. Then Ek
descends to an elliptic curve Ek over k which is defined by means of the Legendre
form of the Weierstrass equation [cf., e.g., the statement of Corollary 2.2, below].
If, moreover, k is a complete discrete valuation field with ring of integers Ok

such that 2 is invertible in Ok, then Ek has semi-stable reduction over Ok′

[i.e., extends to a semi-abelian scheme over Ok′ ] for some finite extension k′ ⊆ k
of k such that [k′ : k] ≤ 2; if Ek has good reduction over Ok′ [i.e., extends to an
abelian scheme over Ok′ ], then one may in fact take k′ to be k.

(vii) In the situation of (ii), suppose further that k is a complete discrete
valuation field with ring of integers Ok, that Ek descends to an elliptic curve
Ek over k, and that n is invertible in Ok. If Ek has good reduction over Ok

[i.e., extends to an abelian scheme over Ok], then the action of Gk on Ek[n] is
unramified. If Ek has bad multiplicative reduction over Ok [i.e., extends to
a non-proper semi-abelian scheme over Ok], then the kernel of the action of Gk on
Ek[n] determines a tamely ramified extension of k whose ramification index over
k divides n.

Proof. First, we consider assertion (i). Suppose that φ is not injective. Since
Autk(A, λ) is well-known to be finite [cf., e.g., [Milne], Proposition 17.5, (a)], we
thus conclude that there exists an α ∈ Ker(φ) of order n �= 1. We may assume
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without loss of generality that n is prime. Now we follow the argument of [Milne],
Proposition 17.5, (b). Since α acts trivially on A[l], it follows immediately that the
endomorphism of A given by α− idA [where idA denotes the identity automorphism
of A] may be written in the form l · β, for β an endomorphism of A over k. Write
Tl(A) for the l-adic Tate module of A. Since αn = idA, it follows that the eigen-
values of the action of α on Tl(A) are n-th roots of unity. On the other hand, the
eigenvalues of the action of β on Tl(A) are algebraic integers [cf. [Milne], Theorem
12.5]. We thus conclude that each eigenvalue ζ of the action of α on Tl(A) is an
n-th root of unity which, as an algebraic integer, is ≡ 1 (mod l) [where l ≥ 3],
hence = 1. Since αn = idA, it follows that α acts on Tl(A) as a semi-simple matrix
which is also unipotent, hence equal to the identity matrix. But this implies that
α = idA [cf. [Milne], Theorem 12.5]. This contradiction completes the proof of
assertion (i).

Next, we consider assertion (ii). Since Ek is proper over k, it follows [by
considering the space of global sections of the structure sheaf of Ek] that any

automorphism of the scheme Ek lies over an automorphism of k. This implies the
existence of a natural exact sequence and natural representation as in the statement
of assertion (ii). The relationship between kE and the j-invariant of Ek follows
immediately from the well-known theory of the j-invariant of an elliptic curve [cf.,
e.g., [Silv], Chapter III, Proposition 1.4, (b), (c)]. The final portion of assertion (ii)
concerning models of Ek follows immediately from the definitions. This completes
the proof of assertion (ii). Assertion (iii) follows immediately from the fact that
{±1} acts trivially on Ek[2].

Next, we consider assertion (iv). First, let us observe that it follows immedi-
ately from the final portion of assertion (ii) that a model E∗

k of Ek over k all of whose
l-torsion points are rational over k corresponds to a closed subgroupH∗ ⊆ Autk(Ek)
that lies in the kernel of ρl and, moreover, maps isomorphically to Gk. On the other
hand, it follows from assertion (i) that the restriction of ρl to Autk(Ek) ⊆ Autk(Ek)
is injective. Thus, the closed subgroup H∗ ⊆ Autk(Ek) is uniquely determined by
the condition that it lie in the kernel of ρl and, moreover, map isomorphically to
Gk. This completes the proof of assertion (iv).

Next, we consider assertion (v). First, let us observe that, by considering l-
level structures, we obtain a finite covering of S → (Mell)Z[ 1l ] which is étale over

(Mell)Z[ 1l ] and tamely ramified over the divisor at infinity. Then it follows from

assertion (i) that the algebraic stack S is in fact a scheme, which is, moreover,
proper over Z[ 1l ]. Thus, it follows from the valuative criterion for properness that
any k-valued point of S determined by Ek — where we observe that such a point
necessarily exists, in light of our assumption that the l-torsion points of Ek are
rational over k — extends to an Ok-valued point of S, hence also of Mell, as
desired. This completes the proof of assertion (v).

Next, we consider assertion (vi). Since GE = Gk, it follows from assertion
(ii) that Ek descends to an elliptic curve Ek over k. Our assumption that the
representation Gk = GE → Aut(Ek[2]) of assertion (iii) is trivial implies that
the 2-torsion points of Ek are rational over k. Thus, by considering suitable global
sections of tensor powers of the line bundle on Ek determined by the origin on
which the automorphism “−1” of Ek acts via multiplication by ±1 [cf., e.g., [Harts],
Chapter IV, the proof of Proposition 4.6], one concludes immediately that a suitable
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[possibly trivial] twist E′
k of Ek over k [i.e., such that E′

k and Ek are isomorphic over
some quadratic extension k′ of k] may be defined by means of the Legendre form
of the Weierstrass equation. Now suppose that k is a complete discrete valuation
field with ring of integers Ok such that 2 is invertible in Ok, and that Ek is defined
by means of the Legendre form of the Weierstrass equation. Then the fact that Ek

has semi-stable reduction over Ok′ for some finite extension k′ ⊆ k of k such that
[k′ : k] ≤ 2 follows from the explicit computations of the proof of [Silv], Chapter
VII, Proposition 5.4, (c). These explicit computations also imply that if Ek has
good reduction over Ok′ , then one may in fact take k′ to be k. This completes the
proof of assertion (vi).

Assertion (vii) follows immediately from [NerMod], §7.4, Theorem 5, in the
case of good reduction and from [NerMod], §7.4, Theorem 6, in the case of bad
multiplicative reduction. ©

We are now ready to apply the elementary computations discussed above to
give more explicit log-volume estimates for Θ-pilot objects. We begin by recalling
some notation and terminology from [GenEll], §1.

Definition 1.9. Let F be a number field [i.e., a finite extension of the ra-
tional number field Q], whose set of valuations we denote by V(F ). Thus, V(F )
decomposes as a disjoint union V(F ) = V(F )non

⋃
V(F )arc of nonarchimedean

and archimedean valuations. If v ∈ V(F ), then we shall write Fv for the completion
of F at v; if v ∈ V(F )non, then we shall write ev for the ramification index of Fv

over Qpv , fv for the residue field degree of Fv over Qpv , and qv for the cardinality
of the residue field of Fv.

(i) An [R-]arithmetic divisor a on F is defined to be a finite formal sum∑
v∈V(F )

cv · v

— where cv ∈ R, for all v ∈ V(F ). Here, we shall refer to the set

Supp(a)

of v ∈ V(F ) such that cv �= 0 as the support of a; if all of the cv are ≥ 0, then we
shall say that the arithmetic divisor is effective. Thus, the [R-]arithmetic divisors
on F naturally form a group ADivR(F ). The assignment

V(F )non � v �→ log(qv); V(F )arc � v �→ 1

determines a homomorphism

degF : ADivR(F ) → R

which we shall refer to as the degree map. If a ∈ ADivR(F ), then we shall refer to

deg(a)
def
=

1

[F : Q]
· degF (a)
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as the normalized degree of a. Thus, for any finite extension K of F , we have

deg(a|K) = deg(a)

— where we write deg(a|K) for the normalized degree of the pull-back a|K ∈
ADivR(K) [defined in the evident fashion] of a to K.

(ii) Let vQ ∈ VQ
def
= V(Q), E ⊆ V(F ) a nonempty set of elements lying over

vQ. If a =
∑

v∈V(F )

cv · v ∈ ADivR(F ), then we shall write

aE
def
=

∑
v∈E

cv · v ∈ ADivR(F ); degE(a)
def
=

deg(aE)∑
v∈E

[Fv : QvQ
]

for the portion of a supported in E and the “normalized E-degree” of a, respectively.
Thus, for any finite extension K of F , we have

degE|K (a|K) = degE(a)

— where we write E|K ⊆ V(K) for the set of valuations lying over valuations ∈ E.

Theorem 1.10. (Log-volume Estimates for Θ-Pilot Objects) Fix a col-
lection of initial Θ-data as in [IUTchI], Definition 3.1. Suppose that we are
in the situation of [IUTchIII], Corollary 3.12, and that the elliptic curve EF has
good reduction at every valuation ∈ V(F )good

⋂
V(F )non that does not divide

2l. In the notation of [IUTchI], Definition 3.1, let us write dmod
def
= [Fmod : Q],

(1 ≤) emod (≤ dmod) for the maximal ramification index of Fmod [i.e., of valu-

ations ∈ Vnon
mod] over Q, d∗mod

def
= 212 ·33 ·5 ·dmod, e

∗
mod

def
= 212 ·33 ·5 · emod (≤ d∗mod),

and

Fmod ⊆ Ftpd
def
= Fmod( EFmod

[2] ) ⊆ F

for the “tripodal” intermediate field obtained from Fmod by adjoining the fields of
definition of the 2-torsion points of any model of EF×FF over Fmod [cf. Proposition
1.8, (ii), (iii)]. Moreover, we assume that the (3·5)-torsion points of EF are defined
over F , and that

F = Fmod(
√−1, EFmod

[2 · 3 · 5] ) def
= Ftpd(

√−1, EFtpd
[3 · 5] )

— i.e., that F is obtained from Ftpd by adjoining
√−1, together with the fields of

definition of the (3 ·5)-torsion points of a model EFtpd
of the elliptic curve EF ×F F

over Ftpd determined by the Legendre form of the Weierstrass equation [cf., e.g.,
the statement of Corollary 2.2, below; Proposition 1.8, (vi)]. [Thus, it follows
from Proposition 1.8, (iv), that EF

∼= EFtpd
×Ftpd

F over F , and from [IUTchI],
Definition 3.1, (c), that l �= 5.] If Fmod ⊆ F� ⊆ K is any intermediate extension
which is Galois over Fmod, then we shall write

d
F�
ADiv ∈ ADivR(F�)
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for the effective arithmetic divisor determined by the different ideal of F� over
Q,

q
F�
ADiv ∈ ADivR(F�)

for the effective arithmetic divisor determined by the q-parameters of the elliptic

curve EF at the elements of V(F�)bad
def
= Vbad

mod ×Vmod
V(F�) ( �= ∅) [cf. [GenEll],

Remark 3.3.1],

f
F�
ADiv ∈ ADivR(F�)

for the effective arithmetic divisor whose support coincides with Supp(q
F�
ADiv), but

all of whose coefficients are equal to 1 — i.e., the conductor — and

log(d
F�
v )

def
= degV(F�)v

(d
F�
ADiv) ∈ R≥0; log(d

F�
vQ )

def
= degV(F�)vQ

(d
F�
ADiv) ∈ R≥0

log(dF�)
def
= deg(d

F�
ADiv) ∈ R≥0

log(qv)
def
= degV(F�)v

(q
F�
ADiv) ∈ R≥0; log(qvQ

)
def
= degV(F�)vQ

(q
F�
ADiv) ∈ R≥0

log(q)
def
= deg(q

F�
ADiv) ∈ R≥0

log(f
F�
v )

def
= degV(F�)v

(f
F�
ADiv) ∈ R≥0; log(f

F�
vQ

)
def
= degV(F�)vQ

(f
F�
ADiv) ∈ R≥0

log(fF�)
def
= deg(f

F�
ADiv) ∈ R≥0

— where v ∈ Vmod = V(Fmod), vQ ∈ VQ = V(Q), V(F�)v
def
= V(F�) ×Vmod

{v},
V(F�)vQ

def
= V(F�) ×VQ

{vQ}. Here, we observe that the various “log(q(−))’s” are
independent of the choice of F�, and that the quantity “|log(q)| ∈ R>0” defined in

[IUTchIII], Corollary 3.12, is equal to 1
2l · log(q) ∈ R [cf. the definition of “q

v
”

in [IUTchI], Example 3.2, (iv)]. Then one may take the constant “CΘ ∈ R” of
[IUTchIII], Corollary 3.12, to be

l+1
4·|log(q)| ·

{
(1 + 12·dmod

l ) · (log(dFtpd) + log(fFtpd)) + 10 · (e∗mod · l + ηprm)

− 1
6 · (1− 12

l2 ) · log(q)
}
− 1

and hence, by applying the inequality “CΘ ≥ −1” of [IUTchIII], Corollary 3.12,
conclude that

1
6 · log(q) ≤ (1 + 20·dmod

l ) · (log(dFtpd) + log(fFtpd)) + 20 · (e∗mod · l + ηprm)

≤ (1 + 20·dmod

l ) · (log(dF ) + log(fF )) + 20 · (e∗mod · l + ηprm)

— where ηprm is the positive real number of Proposition 1.6.

Proof. For ease of reference, we divide our discussion into steps, as follows.

(i) We begin by recalling the following elementary identities for n ∈ N≥1:

(E1) 1
n

n∑
m=1

m = 1
2 (n+ 1);

(E2) 1
n

n∑
m=1

m2 = 1
6 (2n+ 1)(n+ 1).
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Also, we recall the following elementary facts:

(E3) For p a prime number, the cardinality |GL2(Fp)| of GL2(Fp) is given by
|GL2(Fp)| = p(p+ 1)(p− 1)2.

(E4) For p = 2, 3, 5, the expression of (E3) may be computed as follows:
2(2+1)(2−1)2 = 2·3; 3(3+1)(3−1)2 = 3·24; 5(5+1)(5−1)2 = 5·25 ·3.

(E5) The degree of the extension Fmod(
√−1 )/Fmod is ≤ 2.

(E6) We have: 0 ≤ log(2) ≤ 1, 1 ≤ log(3) ≤ log(π) ≤ log(5) ≤ 2.

(ii) Next, let us observe that the inequality

log(dFtpd) + log(fFtpd) ≤ log(dF ) + log(fF )

follows immediately from Proposition 1.3, (i), and the various definitions involved.
On the other hand, the inequality

log(dF ) + log(fF ) ≤ log(dFtpd) + log(fFtpd) + log(211 · 33 · 52)
≤ log(dFtpd) + log(fFtpd) + 21

follows by applying Proposition 1.3, (i), at the primes that do not divide 2 · 3 · 5
[where we recall that the extension F/Ftpd is tamely ramified over such primes — cf.
Proposition 1.8, (vi), (vii)] and applying Proposition 1.3, (ii), together with (E3),
(E4), (E5), (E6), and the fact that we have a natural outer inclusion Gal(F/Ftpd) ↪→
GL2(F3) × GL2(F5) × Z/2Z, at the primes that divide 2 · 3 · 5. In a similar vein,
since the extension K/F is tamely ramified at the primes that do not divide l, and
we have a natural outer inclusion Gal(K/F ) ↪→ GL2(Fl), the inequality

log(dK) ≤ log(dK) + log(fK) ≤ log(dF ) + log(fF ) + 2 · log(l)
≤ log(dFtpd) + log(fFtpd) + 2 · log(l) + 21

follows immediately from Proposition 1.3, (i), (ii). Finally, for later reference, we
observe that

(1 + 4
l ) · log(dK) ≤ (1 + 4

l ) · (log(dFtpd) + log(fFtpd)) + 2 · log(l) + 46

— where we apply the estimates log(l)
l ≤ 1

2 and 1 + 4
l ≤ 2, both of which may be

regarded as consequences of the fact that l ≥ 5 [cf. also (E6)].

(iii) If Ftpd ⊆ F� ⊆ K is any intermediate extension which is Galois over Fmod,
then we shall write

V(F�)
dst ⊆ V(F�)

non

for the set of “distinguished” nonarchimedean valuations v ∈ V(F�)non, i.e., v
that extend to a valuation ∈ V(K)non that ramifies over Q. Now observe that it
follows immediately from Proposition 1.8, (vi), (vii), together with our assumption
on V(F )good

⋂
V(F )non, that

(D0) if v ∈ V(Ftpd)
non does not divide 2 ·3 ·5 · l and, moreover, is not contained

in Supp(q
Ftpd

ADiv), then the extension K/Ftpd is unramified over v.
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Next, let us recall the well-known fact that the determinant of the Galois rep-
resentation determined by the torsion points of an elliptic curve over a field of
characteristic zero is the abelian Galois representation determined by the cyclo-
tomic character. In particular, it follows [cf. the various definitions involved] that
K contains a primitive 4 · 3 · 5 · l-th root of unity, hence is ramified over Q at any
valuation ∈ V(K)non that divides 2 · 3 · 5 · l. Thus, one verifies immediately [i.e., by
applying (D0); cf. also [IUTchI], Definition 3.1, (c)] that the following conditions
on a valuation v ∈ V(F�)non are equivalent:

(D1) v ∈ V(F�)dst.
(D2) The valuation v either divides 2 · 3 · 5 · l or lies in Supp(q

F�
ADiv + d

F�
ADiv).

(D3) The image of v in V(Ftpd) lies in V(Ftpd)
dst.

Let us write

Vdst
mod ⊆ Vnon

mod; Vdst
Q ⊆ Vnon

Q

for the respective images of V(Ftpd)
dst in Vmod, VQ and, for F∗ ∈ {Fmod,Q} and

vQ ∈ VQ,

sF∗
ADiv

def
=

∑
v∈V(F∗)dst

ev · v ∈ ADivR(F∗)

log(sF∗
vQ
)

def
= degV(F∗)vQ

(sF∗
ADiv) ∈ R≥0; log(sF∗)

def
= deg(sF∗

ADiv) ∈ R≥0

s≤ADiv
def
=

∑
wQ∈V(Q)dst

ιwQ

log(pwQ
) · wQ ∈ ADivR(Q)

log(s≤vQ
)

def
= degV(Q)vQ

(s≤ADiv) ∈ R≥0; log(s≤) def
= deg(s≤ADiv) ∈ R≥0

— where we write V(F∗)vQ

def
= V(F∗) ×VQ

{vQ}; we set ιwQ

def
= 1 if pwQ

≤ e∗mod · l,
ιwQ

def
= 0 if pwQ

> e∗mod · l. Then one verifies immediately [again, by applying (D0);
cf. also [IUTchI], Definition 3.1, (c)] that the following conditions on a valuation
vQ ∈ Vnon

Q are equivalent:

(D4) vQ ∈ Vdst
Q .

(D5) The valuation vQ ramifies in K.

(D6) Either pvQ | 2 · 3 · 5 · l or vQ lies in the image of Supp(q
Ftpd

ADiv + d
Ftpd

ADiv).

(D7) Either pvQ | 2 · 3 · 5 · l or vQ lies in the image of Supp(qFADiv + dFADiv).

Here, we observe in passing that, for v ∈ V(F�),

(R1) log(ev) ≤ log(211 · 33 · 5 · emod · l4) if v divides l,

(R2) log(ev) ≤ log(211 ·33 ·5 ·emod · l) if v divides 2 ·3 ·5 or lies in Supp(q
F�
ADiv)

[hence does not divide l],
(R3) log(ev) ≤ log(211 · 33 · 5 · emod) if v does not divide 2 · 3 · 5 · l and,

moreover, is not contained in Supp(q
F�
ADiv),

and hence that
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(R4) if ev ≥ pv − 1 > pv − 2, then pv ≤ 212 · 33 · 5 · emod · l = e∗mod · l, and
log(ev) ≤ −3 + 4 · log(e∗mod · l)

— cf. (E3), (E4), (E5), (E6); (D0); Proposition 1.8, (v), (vii); [IUTchI], Definition
3.1, (c). Next, for later reference, we observe that the inequality

1
pvQ

· log(sFmod
vQ

) ≤ 1
pvQ

· log(pvQ)

holds for any vQ ∈ VQ; in particular, when pvQ
= l (≥ 5), it holds that

1
pvQ

· log(sFmod
vQ

) ≤ 1
pvQ

· log(pvQ
) ≤ 1

2

— cf. (E6). On the other hand, it follows immediately from Proposition 1.3, (i),

by considering the various possibilities for elements ∈ Supp(sFmod

ADiv), that

log(sFmod
vQ

) ≤ 2 · (log(dFtpd
vQ ) + log(f

Ftpd
vQ ))

— and hence that

1
pvQ

· log(sFmod
vQ

) ≤ 2
pvQ

· (log(dFtpd
vQ ) + log(f

Ftpd
vQ ))

— for any vQ ∈ VQ such that pvQ �∈ {2, 3, 5, l}. In a similar vein, we conclude that

log(sQ) ≤ 2 · dmod · (log(dFtpd) + log(fFtpd)) + log(2 · 3 · 5 · l)
≤ 2 · dmod · (log(dFtpd) + log(fFtpd)) + 5 + log(l)

and hence that

4
l · log(sQ) ≤ 8·dmod

l · (log(dFtpd) + log(fFtpd)) + 6

— cf. (E6); the fact that l ≥ 5. Combining this last inequality with the inequality
of the final display of Step (ii) yields the inequality

(1+ 4
l ) · log(dK)+ 4

l · log(sQ) ≤ (1+ 12·dmod

l ) ·(log(dFtpd)+log(fFtpd))+2 · log(l)+52

— where we apply the estimate dmod ≥ 1.

(iv) In order to estimate the constant “CΘ” of [IUTchIII], Corollary 3.12, we
must, according to the various definitions given in the statement of [IUTchIII],
Corollary 3.12, compute an upper bound for the

procession-normalized mono-analytic log-volume of the holomorphic hull
of the union of the possible images of a Θ-pilot object, relative to the
relevant Kummer isomorphisms [cf. [IUTchIII], Theorem 3.11, (ii)], in
the multiradial representation of [IUTchIII], Theorem 3.11, (i), which we
regard as subject to the indeterminacies (Ind1), (Ind2), (Ind3) described
in [IUTchIII], Theorem 3.11, (i), (ii).
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Thus, we proceed to estimate this log-volume at each vQ ∈ VQ. Once one fixes vQ,
this amounts to estimating the component of this log-volume in

“IQ(S
±
j+1

;n,◦D�
vQ
)”

[cf. the notation of [IUTchIII], Theorem 3.11, (i), (a)], for each j ∈ {1, . . . , l�},
which we shall also regard as an element of F�

l , and then computing the average,
over j ∈ {1, . . . , l�}, of these estimates. Here, we recall [cf. [IUTchI], Proposition
6.9, (i); [IUTchIII], Proposition 3.4, (ii)] that S±j+1 = {0, 1, . . . , j}. Also, we recall

from [IUTchIII], Proposition 3.2, that “IQ(S
±
j+1

;n,◦D�
vQ
)” is, by definition, a tensor

product of j+1 copies, indexed by the elements of S±j+1, of the direct sum of the Q-

spans of the log-shells associated to each of the elements of V(Fmod)vQ
[cf., especially,

the second and third displays of [IUTchIII], Proposition 3.2]. In particular, for each
collection

{vi}i∈S±
j+1

of [not necessarily distinct!] elements of V(Fmod)vQ
, we must estimate the com-

ponent of the log-volume in question corresponding to the tensor product of the
Q-spans of the log-shells associated to this collection {vi}i∈S±

j+1
and then compute

the weighted average [cf. the discussion of Remark 1.7.1], over possible collections
{vi}i∈S±

j+1
, of these estimates.

(v) Let vQ ∈ Vdst
Q . Fix j, {vi}i∈S±

j+1
as in Step (iv). Write vi ∈ V

∼→ Vmod =

V(Fmod) for the element corresponding to vi. We would like to apply Proposition
1.4, (iii), to the present situation, by taking

· “I” to be S±j+1;
· “I∗ ⊆ I” to be the set of i ∈ I such that ev

i
> pvQ

− 2;
· “ki” to be Kvi

[so “Ri” will be the ring of integers OKvi
of Kvi

];

· “i†” to be j ∈ S±j+1;

· “λ” to be 0 if vj ∈ V
good;

· “λ” to be “ord(−)” of the element qj
2

vj

[cf. the definition of “q
v
” in

[IUTchI], Example 3.2, (iv)] if vj ∈ V
bad.

Thus, the inclusion “φ(pλ · (RI)
∼) ⊆ p�λ−dI−aI� · logp(R×

I )” of Proposition 1.4,

(iii), implies that the result of multiplying “p�λ�−|I| · 2−|I| · logp(R×
I )” by a suitable

nonpositive [cf. the inequalities concerning “dI+aI” that constitute the final portion
of Proposition 1.4, (iii)] integer power of pvQ

contains the “union of possible images
of a Θ-pilot object” discussed in Step (iv). That is to say, the indeterminacies (Ind1)
and (Ind2) are taken into account by the arbitrary nature of the automorphism “φ”
[cf. Proposition 1.2], while the indeterminacy (Ind3) is taken into account by the
fact that we are considering upper bounds [cf. the discussion of Step (x) of the proof
of [IUTchIII], Corollary 3.12], together with the fact that the above-mentioned
integer power of pvQ is nonpositive, which implies that the module obtained by

multiplying by this power of pvQ contains “p�λ�−|I| · 2−|I| · logp(R×
I )”. Thus, an

upper bound on the component of the log-volume of the holomorphic hull under
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consideration may be obtained by computing an upper bound for the log-volume of
the right-hand side of the inclusion “p�λ−dI−aI� ·logp(R×

I ) ⊆ p�λ−dI−aI�−bI ·(RI)
∼”

of Proposition 1.4, (iii). Such an upper bound

“
(
− λ+ dI + 1

)
· log(p) +

∑
i∈I∗

{3 + log(ei)}”

is given in the second displayed inequality of Proposition 1.4, (iii). Here, we note
that if evi

≤ pvQ
− 2 for all i ∈ I, then this upper bound assumes the form

“
(
− λ+ dI + 1

)
· log(p)”.

On the other hand, by (R4), if evi
> pvQ − 2 for some i ∈ I, then it follows that

pvQ
≤ e∗mod · l, and log(evi

) ≤ −3+4 · log(e∗mod · l), so the upper bound in question
may be taken to be

“
(
− λ+ dI + 1

)
· log(p) + 4(j + 1) · l∗mod”

— where we write l∗mod
def
= log(e∗mod · l). Also, we note that, unlike the other terms

that appear in these upper bounds, “λ” is asymmetric with respect to the choice
of “i† ∈ I” in S±j+1. Since we would like to compute weighted averages [cf. the

discussion of Remark 1.7.1], we thus observe that, after symmetrizing with respect
to the choice of “i† ∈ I” in S±j+1, this upper bound may be written in the form

“β�e”

[cf. the notation of Proposition 1.7] if, in the situation of Proposition 1.7, one takes

· “E” to be V(Fmod)vQ ;
· “n” to be j + 1, so an element “�e ∈ En” corresponds precisely to a
collection {vi}i∈S±

j+1
;

· “λe”, for an element e ∈ E corresponding to v ∈ V(Fmod) = Vmod, to be
[(Fmod)v : QvQ

] ∈ R>0;
· “βe”, for an element e ∈ E corresponding to v ∈ V(Fmod) = Vmod, to be

log(dKv )− j2

2l(j+1) · log(qv) + 1
j+1 · log(pvQ) + 4 · ιvQ · l∗mod

— where we recall that ιvQ
def
= 1 if pvQ ≤ e∗mod · l, ιvQ

def
= 0 if pvQ

> e∗mod · l.

Here, we note that it follows immediately from the first equality of the first dis-
play of Proposition 1.7 that, after passing to weighted averages, the operation of
symmetrizing with respect to the choice of “i† ∈ I” in S±j+1 does not affect the com-
putation of the upper bound under consideration. Thus, by applying Proposition
1.7, we obtain that the resulting “weighted average upper bound” is given by

(j + 1) · log(dKvQ)− j2

2l · log(qvQ) + log(sQvQ) + 4(j + 1) · l∗mod · log(s≤vQ
)
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— where we recall the notational conventions introduced in Step (iii). Thus, it
remains to compute the average over j ∈ F�

l . By averaging over j ∈ {1, . . . , l� =
l−1
2 } and applying (E1), (E2), we obtain the “procession-normalized upper

bound”

(l�+3)
2 · log(dKvQ

)− (2l�+1)(l�+1)
12l · log(qvQ) + log(sQvQ

) + 2(l� + 3) · l∗mod · log(s≤vQ
)

= l+5
4 · log(dKvQ)− l+1

24 · log(qvQ) + log(sQvQ) + (l + 5) · l∗mod · log(s≤vQ)

≤ l+1
4 ·

{
(1 + 4

l ) · log(dKvQ)− 1
6 · log(qvQ) + 4

l · log(sQvQ) + 20
3 · l∗mod · log(s≤vQ

)

}

— where, in the passage to the final displayed inequality, we apply the estimates
1

l+1 ≤ 1
l and 4(l+5)

l+1 ≤ 20
3 , both of which may be regarded as consequences of the

fact that l ≥ 5.

(vi) Next, let vQ ∈ Vnon
Q \ Vdst

Q . Fix j, {vi}i∈S±
j+1

as in Step (iv). Write

vi ∈ V
∼→ Vmod = V(Fmod) for the element corresponding to vi. We would like to

apply Proposition 1.4, (iv), to the present situation, by taking

· “I” to be S±j+1;

· “ki” to be Kvi
[so “Ri” will be the ring of integers OKvi

of Kvi
].

Here, we note that our assumption that vQ ∈ Vnon
Q \Vdst

Q implies that the hypotheses
of Proposition 1.4, (iv), are satisfied. Thus, the inclusion “φ((RI)

∼) ⊆ (RI)
∼” of

Proposition 1.4, (iv), implies that the tensor product of log-shells under consider-
ation contains the “union of possible images of a Θ-pilot object” discussed in Step
(iv). That is to say, the indeterminacies (Ind1) and (Ind2) are taken into account
by the arbitrary nature of the automorphism “φ” [cf. Proposition 1.2], while the
indeterminacy (Ind3) is taken into account by the fact that we are considering upper
bounds [cf. the discussion of Step (x) of the proof of [IUTchIII], Corollary 3.12],
together with the fact that the “container of possible images” is precisely equal to
the tensor product of log-shells under consideration. Thus, an upper bound on the
component of the log-volume under consideration may be obtained by computing
an upper bound for the log-volume of the right-hand side “(RI)

∼” of the above
inclusion. Such an upper bound

“0”

is given in the final equality of Proposition 1.4, (iv). One may then compute a
“weighted average upper bound” and then a “procession-normalized upper
bound”, as was done in Step (v). The resulting “procession-normalized upper
bound” is clearly equal to 0.

(vii) Next, let vQ ∈ Varc
Q . Fix j, {vi}i∈S±

j+1
as in Step (iv). Write vi ∈

V
∼→ Vmod = V(Fmod) for the element corresponding to vi. We would like to

apply Proposition 1.5, (iii), (iv), to the present situation, by taking

· “I” to be S±j+1 [so |I| = j + 1];

· “V ” to be V(Fmod)vQ
;
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· “Cv” to be Kv, where we write v ∈ V
∼→ Vmod for the element determined

by v ∈ V .

Then it follows from Proposition 1.5, (iii), (iv), that

πj+1 ·BI

serves as a container for the “union of possible images of a Θ-pilot object” discussed
in Step (iv). That is to say, the indeterminacies (Ind1) and (Ind2) are taken into
account by the fact that BI ⊆ MI is preserved by arbitrary automorphisms of the
type discussed in Proposition 1.5, (iii), while the indeterminacy (Ind3) is taken into
account by the fact that we are considering upper bounds [cf. the discussion of
Step (x) of the proof of [IUTchIII], Corollary 3.12], together with the fact that, by
Proposition 1.5, (iv), together with our choice of the factor πj+1, this “container of
possible images” contains the elements of MI obtained by forming the tensor prod-
uct of elements of the log-shells under consideration. Thus, an upper bound on the
component of the log-volume under consideration may be obtained by computing
an upper bound for the log-volume of this container. Such an upper bound

(j + 1) · log(π)
follows immediately from the fact that [in order to ensure compatibility with arith-
metic degrees of arithmetic line bundles — cf. [IUTchIII], Proposition 3.9, (iii) —
one is obliged to adopt normalizations which imply that] the log-volume of BI is
equal to 0. One may then compute a “weighted average upper bound” and
then a “procession-normalized upper bound”, as was done in Step (v). The resulting
“procession-normalized upper bound” is given by

l+5
4 · log(π) ≤ l+1

4 · 4
— cf. (E1), (E6); the fact that l ≥ 5.

(viii) Now we return to the discussion of Step (iv). In order to compute the
desired upper bound for “CΘ”, it suffices to sum over vQ ∈ VQ the various local
“procession-normalized upper bounds” obtained in Steps (v), (vi), (vii) for
vQ ∈ VQ. By applying the inequality of the final display of Step (iii), we thus obtain
the following upper bound for “CΘ ·|log(q)|”, i.e., the product of “CΘ” and 1

2l ·log(q):

l+1
4 ·

{
(1 + 12·dmod

l ) · (log(dFtpd) + log(fFtpd)) + 2 · log(l) + 56− 1
6 · (1− 12

l2 ) · log(q)

+ 20
3 · l∗mod · log(s≤)

}
− 1

2l · log(q)

— where we apply the estimate l+1
4 · 1

6 · 12
l2 ≥ 1

2l [cf. the fact that l ≥ 1].

Now let us recall the constant “ηprm” of Proposition 1.6. By applying Propo-
sition 1.6, we compute:

l∗mod · log(s≤) ≤ log(e∗mod · l) ·
∑

p ≤ e∗
mod

·l
1 ≤ 4

3 · log(e∗mod · l) · e∗mod·l
log(e∗

mod
·l)

= 4
3 · e∗mod · l
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— where the sum ranges over the primes p ≤ e∗mod · l — if e∗mod · l ≥ ηprm;

l∗mod · log(s≤) ≤ log(e∗mod · l) ·
∑

p ≤ e∗
mod

·l
1 ≤ 4

3 · log(ηprm) · ηprm

log(ηprm)

= 4
3 · ηprm

— where the sum ranges over the primes p ≤ e∗mod · l — if e∗mod · l < ηprm. Thus,
we conclude that

l∗mod · log(s≤) ≤ 4
3 · (e∗mod · l + ηprm)

[i.e., regardless of the size of e∗mod · l]. Also, let us observe that

1
3 · 4

3 · (e∗mod · l + ηprm) ≥ 1
3 · 4

3 · e∗mod · l ≥ 2 · 2 · 212 · 3 · 5 · l ≥ 2 · log(l) + 56

— where we apply the estimates emod ≥ 1, 212 · 3 · 5 ≥ 56, l ≥ 5 ≥ 1, l ≥ log(l)
[cf. the fact that l ≥ 5]. Thus, substituting back into our original upper bound for
“CΘ · |log(q)|”, we obtain the following upper bound for “CΘ”:

l+1
4·|log(q)| ·

{
(1 + 12·dmod

l ) · (log(dFtpd) + log(fFtpd)) + 10 · (e∗mod · l + ηprm)

− 1
6 · (1− 12

l2 ) · log(q)
}
− 1

— where we apply the estimate 20+1
3 · 4

3 = 7·4
3 ≤ 10 — i.e., as asserted in the

statement of Theorem 1.10. The final portion of Theorem 1.10 follows immediately
from [IUTchIII], Corollary 3.12, by applying the inequality of the first display of
Step (ii), together with the estimates

(1− 12
l2 )

−1 ≤ 2; (1− 12
l2 )

−1 · (1 + 12·dmod

l ) ≤ 1 + 20·dmod

l

[cf. the fact that l ≥ 7, dmod ≥ 1]. ©

Remark 1.10.1. One of the main original motivations for the development of
the theory discussed in the present series of papers was to create a framework, or
geometry, within which a suitable analogue of the scheme-theoretic Hodge-Arakelov
theory of [HASurI], [HASurII] could be realized in such a way that the obstruc-
tions to diophantine applications that arose in the scheme-theoretic formulation of
[HASurI], [HASurII] [cf. the discussion of [HASurI], §1.5.1; [HASurII], Remark 3.7]
could be avoided. From this point of view, it is of interest to observe that the com-
putation of the “leading term” of the inequality of the final display of the statement
of Theorem 1.10 — i.e., of the term

(l�+3)
2 · log(dKvQ)− (2l�+1)(l�+1)

12l · log(qvQ
)

that occurs in the final display of Step (v) of the proof of Theorem 1.10 — via the
identities (E1), (E2) is essentially identical to the computation of the leading term
that occurs in the proof of [HASurI], Theorem A [cf. the discussion following the
statement of Theorem A in [HASurI], §1.1]. That is to say, in some sense,
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the computations performed in the proof of Theorem 1.10 were already
essentially known to the author around the year 2000; the problem then
was to construct an appropriate framework, or geometry, in which
these computations could be performed!

This sort of situation may be compared to the computations underlying the Weil
Conjectures priori to the construction of a “Weil cohomology” in which those
computations could be performed, or, alternatively, to various computations of
invariants in topology or differential geometry that were motivated by computations
in physics, again prior to the construction of a suitable mathematical framework
in which those computations could be performed.

Remark 1.10.2. The computation performed in the proof of Theorem 1.10 may
be thought of as the computation of a sort of derivative in the F�

l -direction,
which, relative to the analogy between the theory of the present series of papers
and the p-adic Teichmüller theory of [pOrd], [pTeich], corresponds to the derivative
of the canonical Frobenius lifting — cf. the discussion of [IUTchIII], Remark 3.12.4,
(iii). In this context, it is useful to recall the arithmetic Kodaira-Spencer morphism
that occurs in scheme-theoretic Hodge-Arakelov theory [cf. [HASurII], §3]. In
particular, in [HASurII], Corollary 3.6, it is shown that, when suitably formulated,
a “certain portion” of this arithmetic Kodaira-Spencer morphism coincides with the
usual geometric Kodaira-Spencer morphism. From the point of view of the action
of GL2(Fl) on the l-torsion points involved, this “certain portion” consists of the
unipotent matrices (

1 ∗
0 1

)
of GL2(Fl). By contrast, the F�

l -symmetries that occur in the present series of
papers correspond to the toral matrices( ∗ 0

0 ∗

)

of GL2(Fl) — cf. the discussion of [IUTchI], Example 4.3, (i). As we shall see in
§2 below, in the present series of papers, we shall ultimately take l to be “large”.
When l is “sufficiently large”, GL2(Fl) may be thought of as a “good approximation”
for GL2(Z) or GL2(R) — cf. the discussion of [IUTchI], Remark 6.12.3, (i), (iii).
In the case of GL2(R), “toral subgroups” may be thought of as corresponding to
the isotropy subgroups [isomorphic to S1] of points that arise from the action of
GL2(R) on the upper half-plane, i.e., subgroups which may be thought of as a sort
of geometric, group-theoretic representation of tangent vectors at a point.

Remark 1.10.3. The “terms involving l” that occur in the inequality of the
final display of Theorem 1.10 may be thought of as an inevitable consequence of the
fundamental role played in the theory of the present series of papers by the l-torsion
points of the elliptic curve under consideration. Here, we note that it is of crucial
importance to work over the field of rationality of the l-torsion points [i.e., “K” as
opposed to “F”] not only when considering the global portions of the various ΘNF-
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and Θ±ell-Hodge theaters involved, but also when considering the local portions —
i.e., the prime-strips — of these ΘNF- and Θ±ell-Hodge theaters. That is to say,
these local portions are necessary, for instance, in order to glue together the ΘNF-
and Θ±ell-Hodge theaters that appear so as to form a Θ±ellNF-Hodge theater [cf.
the discussion of [IUTchI], Remark 6.12.2]. In particular, to allow, within these
local portions, any sort of “Galois indeterminacy” with respect to the l-torsion
points — even, for instance, at v ∈ V

good⋂
V

non, which, at first glance, might
appear irrelevant to the theory of Hodge-Arakelov-theoretic evaluation at l-torsion
points developed in [IUTchII] — would have the effect of invalidating the various
delicate manipulations involving l-torsion points discussed in [IUTchI], §4, §6 [cf.,
e.g., [IUTchI], Propositions 4.7, 6.5].

Remark 1.10.4. The various fluctuations in log-volume — i.e., whose computa-
tion is the subject of Theorem 1.10! — that arise from themultiradial representation
of [IUTchIII], Theorem 3.11, (i), may be thought of as a sort of “inter-universal
analytic torsion”. Indeed,

in general, “analytic torsion”may be understood as a sort ofmeasure—
in “metrized” [e.g., log-volume!] terms — of the degree of deviation of
the “holomorphic functions” [such as sections of a line bundle] on a variety
— i.e., which depend, in an essential way, on the holomorphic moduli
of the variety! — from the “real analytic functions” — i.e., which are
invariant with respect to deformations of the holomorphic moduli
of the variety.

For instance:

(a) In “classical” Arakelov theory, analytic torsion typically arises as [the log-
arithm of] a sort of normalized determinant of the Laplacian acting on some
space of real analytic [or L2-] sections of a line bundle on a complex variety equipped
with a real analytic Kähler metric [cf., e.g., [Arak], Chapters V, VI]. Here, we recall
that in this sort of situation, the space of holomorphic sections of the line bundle
is given by the kernel of the Laplacian; the definition of the Laplacian depends, in
an essential way, on the Kähler metric, hence, in particular, on the holomorphic
moduli of the variety under consideration [cf., e.g., the case of the Poincaré metric
on a hyperbolic Riemann surface!].

(b) In the scheme-theoretic Hodge-Arakelov theory discussed in [HASurI], [HA-
SurII], the main theorem consists of a sort of comparison isomorphism [cf. [HASurI],
Theorem A] between a certain subspace of the space of global sections of the pull-
back of an ample line bundle on an elliptic curve to the universal vectorial extension
of the elliptic curve and the space of set-theoretic functions on the torsion points of
the elliptic curve. That is to say, the former space of sections contains, in a natu-
ral way, the space of holomorphic sections of the ample line bundle on the elliptic
curve, while the latter space of functions may be thought of as a sort of “discrete
approximation” of the space of real analytic functions on the elliptic curve [cf. the
discussion of [HASurI], §1.3.2, §1.3.4]. In this context, the “Gaussian poles” [cf.
the discussion of [HASurI], §1.1] arise as a measure of the discrepancy of integral
structures between these two spaces in a neighborhood of the divisor at infinity of
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the moduli stack of elliptic curves, hence may be thought of as a sort of “analytic
torsion at the divisor at infinity” [cf. the discussion of [HASurI], §1.2].

(c) In the case of the multiradial representation of [IUTchIII], Theorem 3.11,
(i), the fluctuations of log-volume computed in Theorem 1.10 arise precisely as a
result of the execution of a comparison of an “alien” arithmetic holomorphic
structure to this multiradial representation, which is compatible with the per-
mutation symmetries of the étale-picture, i.e., which is “invariant with respect to
deformations of the arithmetic holomorphic moduli of the number field under con-
sideration” in the sense that it makes sense simultaneously with respect to distinct
arithmetic holomorphic structures [cf. [IUTchIII], Remark 3.11.1; [IUTchIII], Re-
mark 3.12.3, (ii)]. Here, it is of interest to observe that the object of this comparison
consists of the values of the theta function, i.e., in essence, a “holomorphic section
of an ample line bundle”. In particular, the resulting fluctuations of log-volume
may be thought as a sort of “analytic torsion”. By analogy to the terminology
“Gaussian poles” discussed in (b) above, it is natural to think of the terms involv-
ing the different dK(−) that appear in the computation underlying Theorem 1.10 [cf.,

e.g., the final display of Step (v) of the proof of Theorem 1.10] as “differential
poles” [cf. the discussion of Remarks 1.10.1, 1.10.2]. Finally, in the context of the
normalized determinants that appear in (a), it is interesting to note the role played
by the prime number theorem — i.e., in essence, the Riemann zeta func-
tion [cf. Proposition 1.6 and its proof] — in the computation of “inter-universal
analytic torsion” given in the proof of Theorem 1.10.

Remark 1.10.5. The above remarks focused on the conceptual aspects of the
theory surrounding Theorem 1.10. Before proceeding, however, we pause to discuss
briefly certain aspects of Theorem 1.10 that are of interest from a computational
point of view, i.e., in the spirit of conventional analytic number theory.

(i) First, we begin by observing that, unlike the inequalities that appear in the
various results [cf. Corollaries 2.2, (ii); 2.3] obtained in §2 below, the inequalities
obtained in Theorem 1.10 involve only essentially explicit constants and, more-
over, do not require one to exclude some non-explicit finite set of “isomorphism
classes of exceptional elliptic curves”. From this point of view,

the inequalities obtained in Theorem 1.10 are suited to application to
computations concerning various explicit diophantine equations,
such as, for instance, the equations that appear in “Fermat’s Last Theo-
rem”.

Such explicit computations in the case of specific diophantine equations are, how-
ever, beyond the scope of the present paper.

(ii) One topic of interest in the context of computational aspects of Theorem
1.10 is the asymptotic behavior of the bound that appears in, say, the first
inequality of the final display of Theorem 1.10. Let us assume, for simplicity,

that Ftpd = Q [so dmod = 1]. Also, to simplify the notation, let us write δ
def
=

log(dFtpd) + log(fFtpd) = log(fFtpd). Then the bound under consideration assumes
the form

δ + ∗ · δ
l + ∗ · l + ∗
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— where, in the present discussion, the “∗’s” are to be understood as denoting fixed
positive real numbers. Thus, the leading term [cf. the discussion of Remark 1.10.1]
is equal to δ. The remaining terms give rise to the “ε terms” [and bounded discrep-
ancy] of the inequalities of Corollaries 2.2, (ii); 2.3, obtained in §2 below. Thus,
if one ignores “bounded discrepancies”, it is of interest to consider the behavior of
the “ε terms”

∗ · δ
l + ∗ · l

as one allows the initial Θ-data under consideration to vary [i.e., subject to the
condition “Ftpd = Q”]. In this context, one fundamental observation is the fol-
lowing: although l is subject to various other conditions, no matter how “skillfully”
one chooses l, the resulting “ε terms” are always

≥ ∗ · δ1/2

— an estimate that may be obtained by thinking of l as ≈ δα, for some real
number α, and comparing δα and δ1−α. This estimate is of particular interest
in the context of various explicit examples constructed by Masser and others [cf.
[Mss]; the discussion of [vFr], §2] in which explicit “abc sums” are constructed for
which the quantity on the left-hand side of the inequality of Theorem 1.10 under
consideration exceeds the order of δ +

∗ · δ1/2

log(δ)

— cf. [vFr], Equation (6). In particular, the asymptotic estimates given by Theorem
1.10 are consistent with the known asymptotic behavior of these explicit abc sums.
Indeed, the exponent “ 1

2” that appears in the fundamental observation discussed
above coincides precisely with the “expectation” expressed by van Frankenhuijsen
in the final portion of the discussion of [vFr], §2! In the present paper, although we
are unable to in fact achieve bounds on the “ε terms” of the order ∗ · δ1/2, we do
succeed in obtaining bounds on the “ε terms” of the order

∗ · δ1/2 · log(δ)

— albeit under the assumption that the abc sums under consideration are com-
pactly bounded away from infinity at the prime 2, as well as at the archimedean
prime [cf. Corollary 2.2, (ii); Remark 2.2.1 below for more details].

(iii) In the context of the discussion of (ii), it is of interest to observe that
the “∗ · l” portion of the “ε terms” that appear arises from the estimates given
in Step (viii) of the proof of Theorem 1.10 for the quantity “log(s≤)”. From the
point of view of the discussion of [vFr], §3, this quantity corresponds essentially
to a “certain portion” of the quantity “ω(abc)” associated to an abc sum. That
is to say, whereas “ω(abc)” denotes the total number of prime factors that occur
in the product abc, the quantity “log(s≤)” corresponds, roughly speaking, to the
number of these prime factors that are ≤ e∗mod · l. The appearance [i.e., in the proof
of Theorem 1.10] of such a term which is closely related to “ω(abc)” is of interest
from the point of view of the discussion of [vFr], §3, partly since it is [not precisely
identical to, but nonetheless] reminiscent of the various refinements of the ABC
Conjecture proposed by Baker [i.e., which are the main topic of the discussion of
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[vFr], §3]. The appearance [i.e., in the proof of Theorem 1.10] of such a term which
is closely related to “ω(abc)” is also of interest from the point of view of the explicit

abc sums discussed in (ii) that give rise to asymptotic behavior ≥ ∗ · δ1/2

log(δ) . That

is to say, according to the discussion of [vFr], §3, Remark 1, this sort of abc sum
tends to give rise to a

relatively large value for ω(abc) — i.e., a state of affairs that is con-
sistent with the crucial role played by the “ε term” related to ω(abc) in
the computation of the lower bound “≥ ∗ · δ1/2” that appears in the
fundamental observation of (ii).

By contrast, the abc sums of the form “2n = p + qr” [where p, q, and r are prime
numbers] considered in [vFr], §3, Remark 1, give rise to a

relatively small value for ω(abc) [indeed, ω(abc) ≤ 4] — i.e., a situation
that suggests relatively small/essentially negligible “ε terms” in the bound
of Theorem 1.10 under consideration.

Such essentially negligible “ε terms” are, however, consistent with the fact [cf.
[vFr], §3, Remark 1] that, for such abc sums, the left-hand side of the inequality of
Theorem 1.10 under consideration is roughly ≈ 1

2 · the leading term of the bound
on the right-hand side, hence, in particular, is amply bounded by the leading term
on the right-hand side, without any “help” from the “ε terms”.

Remark 1.10.6.

(i) In the context of the discussion of Remark 1.10.5, it is important to remem-
ber that

the bound on “ 1
6 · log(q)” given in Theorem 1.10 only concerns the q-

parameters at the nonarchimedean valuations contained in Vbad
mod, all of

which are necessarily of odd residue characteristic

— cf. [IUTchI], Definition 3.1, (b). This observation is of relevance to the examples
of abc sums constructed in [Mss] [cf. the discussion of Remark 1.10.5, (ii)], since
it does not appear, at first glance, that there is any way to effectively control the
contributions at the prime 2 in these examples, that is to say, in the notation of
the Proposition of [Mss], to control the power of 2 that divides the integer “c”
of the Proposition of [Mss], or, alternatively, in the notation of the proof of this
Proposition on [Mss], p. 22, to control the power of 2 that divides the difference
“xi − xi−1”. On the other hand, it was pointed out to the author by A. Venkatesh
that in fact it is not difficult to modify the construction of these examples of abc
sums given in [Mss] so as to obtain similar asymptotic estimates to those obtained
in [Mss] [cf. the discussion of Remark 1.10.5, (ii)], even without taking into account
the contributions at the prime 2.

(ii) In the context of the discussion of (i), it is of interest to recall why nonar-
chimedean primes of even residue characteristic where the elliptic curve under
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consideration has bad multiplicative reduction are excluded from Vbad
mod in the the-

ory of the present series of papers. In a word, the reason that the theory encounters
difficulties at primes over 2 is that it depends, in a quite essential way, on the theory
of the étale theta function developed in [EtTh], which fails at primes over 2 [cf.
the assumption that “p is odd” in [EtTh], Theorem 1.10, (iii); [EtTh], Definition
2.5; [EtTh], Corollary 2.18]. From the point of view of the theory of [IUTchI],
[IUTchII], and [IUTchIII] [cf., especially, the theory of [IUTchII], §1, §2: [IUTchII],
Corollary 1.12; [IUTchII], Corollary 2.4, (ii), (iii); [IUTchII], Corollary 2.6], one of
the key consequences of the theory of [EtTh] is the simultaneous multiradiality
of the algorithms that give rise to

(1) constant multiple rigidity and
(2) cyclotomic rigidity.

At a more concrete level, (1) is obtained by evaluating the usual series for the
theta function [cf. [EtTh], Proposition 1.4] at the 2-torsion point in the “irreducible
component labeled zero”. One computes easily that the resulting “special value” is
a unit for odd p, but is equal to a [nonzero] non-unit when p = 2. In particular,
since (1) is established by dividing the series of [EtTh], Proposition 1.4 [i.e., the
usual series for the theta function], by this special value, it follows that

(a) the “integral structure” on the theta function determined by this special
value

coincides with

(b) the “integral structure” on the theta function determined by the natural
integral structure on the pole at the origin

for odd p [cf. [EtTh], Theorem 1.10, (iii)], but not when p = 2. That is to say,
when p = 2, a nontrivial denominator arises. Here, we recall that it is crucial
to evaluate at 2-torsion points, i.e., as opposed to, say, more general points in the
irreducible component labeled zero for reasons discussed in [IUTchII], Remark 2.5.1,
(ii) [cf. also the discussion of [IUTchII], Remark 1.12.2, (i), (ii), (iii), (iv)]. This
nontrivial denominator is fundamentally incompatible with the multiradiality of the
algorithms of (1), (2) in that it is incompatible with the fundamental splitting, or
“decoupling”, into “purely radial” [i.e., roughly speaking, “value group”] and “purely
coric” [i.e., roughly speaking, “unit”] components discussed in [IUTchII], Remarks
1.11.4, (i); 1.12.2, (vi) [cf. also the discussion of [IUTchII], Remark 1.11.5]. That
is to say, on the one hand,

the multiradiality of (1) may only be established if the possible values
at the evaluation points in the irreducible component labeled zero are
known, a priori, to be units, i.e., if one works relative to the integral
structure (a)

— cf. the discussion of [IUTchII], Remark 1.12.2, (i), (ii), (iii), (iv). On the other
hand, if one tries to work



38 SHINICHI MOCHIZUKI

simultaneously with the integral structure (b), hence with the non-
trivial denominator discussed above, then the multiradiality of (2)
is violated.

Here, we recall that the integral structure (b), which is referred to as the “canonical
integral structure” in [EtTh], Proposition 1.4, (iii); [EtTh], Theorem 1.10, (iii), is
in some sense the “integral structure of common sense”.

(iii) It is not entirely clear to the author at the time of writing to what extent
the integral structure (b) is necessary in order to carry out the theory developed
in the present series of papers. Indeed, [EtTh], as well as the present series of
papers, was written in a way that [unlike the discussion of (ii)!] “takes for granted”
the fact that the two integral structures (a), (b) discussed above coincide for odd
p, i.e., in a way which identifies these two integral structures and hence does not
specify, at various key points in the discussion, whether one is in fact working with
integral structure (a) or with integral structure (b). On the other hand, if it is
indeed the case that not only the integral structure (a), but also the integral struc-
ture (b) plays an essential role in the present series of papers, then it follows [cf.
the discussion of (ii)!] that the theory of the present series of papers is funda-
mentally incompatible with the inclusion in Vbad

mod of nonarchimedean primes of
even residue characteristic where the elliptic curve under consideration has bad
multiplicative reduction.

(iv) In the context of the discussion of (ii), (iii), it is perhaps useful to recall
that the classical theory of theta functions also tends to [depending on your point
of view!] “break down” or “assume a completely different form” at the prime 2. For
instance, this phenomenon can be seen throughout Mumford’s theory of algebraic
theta functions, which may be thought of as a sort of predecessor to the scheme-
theoretic Hodge-Arakelov theory of [HASurI], [HASurII], which, in turn, may be
thought of as a sort of predecessor to the theory of the present series of papers.
In a similar vein, it is of interest to recall that the prime 2 is also excluded in
the p-adic Teichmüller theory of [pOrd], [pTeich]. This is done in order to avoid
the complications that occur in the theory of the Lie algebra sl2 over fields of
characteristic 2.

Remark 1.10.7.

(i) Since e∗mod ≤ d∗mod, one may replace “e∗mod” by “d∗mod” in the final two
displays of the statement of Theorem 1.10.

(ii) By contrast, at least if one adheres to the framework of the theory of the
present series of papers,

it is not possible to replace “dmod” by “emod” in the final two displays
of the statement of Theorem 1.10.

The fundamental reason for this is that, in the construction of the multiradial
representation of [IUTchIII], Theorem 3.11, (i), it is necessary to consider tensor
products of copies, labeled by j ∈ F�

l , of Fmod over Q [cf. [IUTchIII], Proposition



INTER-UNIVERSAL TEICHMÜLLER THEORY IV 39

3.3!]. That is to say, it is fundamentally impossible [i.e., relative to the framework
of the theory of the present series of papers] to identify the Fmod-linear structures
for distinct labels j, since the various tensor packets that appear in the multiradial
representation must be constructed in such a way as to depend only on the additive
structure [i.e., not the module structure over some sort of ring such as Fmod!] of
the [mono-analytic!] log-shells involved. Working with tensor powers of copies
of Fmod over Q means that there is no way to avoid, when one localizes at a prime
number p, working with tensor products between localizations of Fmod at distinct
primes of Fmod that divide p. Moreover, whenever even one of these primes of Fmod

is lies under a prime of K that ramifies over Q [cf. condition (D5) of Step (iii) of
the proof of Theorem 1.10], the computation of Step (v) of the proof of Theorem
1.10 necessarily gives rise to a “log(p)” term — i.e., that appears in “log(sQ)” —
that arises from “rounding up” non-integral powers of p [i.e., as in the inclusions of
Proposition 1.4, (iii)], since only integral powers of p make sense in the multiradial
representation. That is to say, whereas integral powers of p only require the use of
the additive structure of the [mono-analytic!] log-shells involved, non-integral
powers only make sense if one is equipped with the module structure over some sort
of ring such as Fmod!
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Section 2: Diophantine Inequalities

In the present §2, we combine Theorem 1.10 with the theory of [GenEll] to
give a proof of the ABC Conjecture, or, equivalently, Vojta’s Conjecture for
hyperbolic curves [cf. Corollary 2.3 below].

We begin by reviewing some well-known estimates.

Proposition 2.1. (Well-known Estimates)

(i) (Linearization of Logarithms) We have log(x) ≤ x for all (R �) x ≥ 1.

(ii) (The Prime Number Theorem) There exists a real number ξprm ≥ 5
such that

2
3 · x ≤ θ(x)

def
=
∑
p≤x

log(p) ≤ 4
3 · x

— where the sum ranges over the prime numbers p such that p ≤ x — for all
(R �) x ≥ ξprm. In particular, if A is a finite set of prime numbers, and we write

θA
def
=

∑
p∈A

log(p)

[where we take the sum to be 0 if A = ∅], then there exists a prime number p �∈ A
such that p ≤ 2(θA + ξprm).

Proof. Assertion (i) is well-known and entirely elementary. Assertion (ii) is a well-
known consequence of the Prime Number Theorem [cf., e.g., [Edw], p. 76; [GenEll],
Lemma 4.1; [GenEll], Remark 4.1.1]. ©

Let Q be an algebraic closure of Q. In the following discussion, we shall apply
the notation and terminology of [GenEll]. Let X be a smooth, proper, geometrically

connected curve over a number field; D ⊆ X a reduced divisor; UX
def
= X\D; d a

positive integer. Write ωX for the canonical sheaf on X. Suppose that UX is a
hyperbolic curve, i.e., that the degree of the line bundle ωX(D) is positive. Then
we recall the following notation:

· UX(Q)≤d ⊆ UX(Q) denotes the subset of Q-rational points defined over
a finite extension field of Q of degree ≤ d [cf. [GenEll], Example 1.3, (i)].

· log-diffX denotes the [normalized] log-different function on UX(Q) [cf.
[GenEll], Definition 1.5, (iii)].

· log-condD denotes the [normalized] log-conductor function on UX(Q) [cf.
[GenEll], Definition 1.5, (iv)].

· htωX(D) denotes the [normalized] height function on UX(Q) associated to
ωX(D), which is well-defined up to a “bounded discrepancy” [cf. [GenEll],
Proposition 1.4, (iii)].
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In order to apply the theory of the present series of papers, it is neceesary to
construct suitable initial Θ-data, as follows.

Corollary 2.2. (Construction of Suitable Initial Θ-Data) Suppose that
X = P1

Q is the projective line over Q, and that D ⊆ X is the divisor consisting of
the three points “0”, “1”, and “∞”. We shall regard X as the “λ-line” — i.e.,
we shall regard the standard coordinate on X = P1

Q as the “λ” in the Legendre

form “y2 = x(x−1)(x−λ)” of the Weierstrass equation defining an elliptic curve —
and hence as being equipped with a natural classifying morphism UX → (Mell)Q
[cf. the discussion preceding Proposition 1.8]. Let

KV ⊆ UX(Q)

be a compactly bounded subset [i.e., regarded as a subset of X(Q) — cf. Re-
mark 2.3.1, (vi), below; [GenEll], Example 1.3, (ii)] whose support contains the
nonarchimedean prime “2”. Suppose further that KV satisfies the following condi-
tion:

(∗j-inv) If v ∈ V(Q) denotes the nonarchimedean prime “2”, then the image of

the subset Kv ⊆ UX(Qv) associated to KV [cf. the notational conventions
of [GenEll], Example 1.3, (ii)] via the j-invariant UX → (Mell)Q → A1

Q

is a bounded subset of A1
Q(Qv) = Qv, i.e., is contained in a subset of

the form 2Nj-inv · OQv
⊆ Qv, where Nj-inv ∈ Z, and OQv

⊆ Qv denotes the

ring of integers.

Then:

(i) Write “log(q∀(−))” (respectively, “log(q
�2
(−))”) for the R-valued function on

Mell(Q), hence also on UX(Q), obtained by forming the normalized degree “deg(−)”
of the effective arithmetic divisor determined by the q-parameters of an elliptic
curve over a number field at arbitrary nonarchimedean primes (respectively, at
the nonarchimedean primes that do not divide 2) [cf. the invariant “log(q)” as-
sociated, in the statement of Theorem 1.10, to the elliptic curve EF ]. Also, we
shall write ht∞ for the [normalized] height function on UX(Q) — a function
which is well-defined up to a “bounded discrepancy” [cf. the discussion preced-
ing [GenEll], Proposition 3.4] — determined by the pull-back to X of the divisor
at infinity of the natural compactification (Mell)Q of (Mell)Q. Then we have an
equality of “bounded discrepancy classes” [cf. [GenEll], Definition 1.2, (ii),
as well as Remark 2.3.1, (ii), below]

1
6 · log(q�2(−)) ≈ 1

6 · log(q∀(−)) ≈ 1
6 · ht∞ ≈ htωX(D)

of functions on KV ⊆ UX(Q).

(ii) There exist

· a positive real number Hunif which is independent of KV and
· positive real numbers CK and HK which depend only on the choice of
the compactly bounded subset KV
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such that the following property is satisfied: Let d be a positive integer, εd a positive

real number ≤ 1. Set δ
def
= 212 · 33 · 5 · d. Then there exists a finite subset Excd ⊆

UX(Q)≤d which depends only on KV , d, and εd, contains all points corresponding
to elliptic curves that admit automorphisms of order > 2, and satisfies the following
property:

The function “log(q∀(−))” of (i) is

≤ Hunif · ε−3
d · d4+εd +HK

on Excd. Let EF be an elliptic curve over a number field F ⊆ Q that determines
a Q-valued point of (Mell)Q which lifts [not necessarily uniquely!] to a point xE ∈
UX(F )

⋂
UX(Q)≤d such that

xE ∈ KV , xE �∈ Excd.

Write Fmod for the minimal field of definition of the corresponding point ∈
Mell(Q) and

Fmod ⊆ Ftpd
def
= Fmod( EFmod

[2] ) ⊆ F

for the “tripodal” intermediate field obtained from Fmod by adjoining the fields of
definition of the 2-torsion points of any model of EF×FQ over Fmod [cf. Proposition
1.8, (ii), (iii)]. Moreover, we assume that the (3·5)-torsion points of EF are defined
over F , and that

F = Fmod(
√−1, EFmod

[2 · 3 · 5] ) def
= Ftpd(

√−1, EFtpd
[3 · 5] )

— i.e., that F is obtained from Ftpd by adjoining
√−1, together with the fields of

definition of the (3 ·5)-torsion points of a model EFtpd
of the elliptic curve EF ×F Q

over Ftpd determined by the Legendre form of the Weierstrass equation discussed
above [cf. Proposition 1.8, (vi)]. [Thus, it follows from Proposition 1.8, (iv), that
EF

∼= EFtpd
×Ftpd

F over F , so xE ∈ UX(Ftpd) ⊆ UX(F ); it follows from Proposi-
tion 1.8, (v), that EF has stable reduction at every element of V(F )non.] Write
log(q∀) (respectively, log(q�2)) for the result of applying the function “log(q∀(−))”

(respectively, “log(q
�2
(−))”) of (i) to xE. Then EF and Fmod arise as the “EF ” and

“Fmod” for a collection of initial Θ-data as in Theorem 1.10 that, in the notation
of Theorem 1.10, satisfies the following conditions:

(C1) (log(q∀))1/2 ≤ l ≤ 10δ · (log(q∀))1/2 · log(2δ · log(q∀));
(C2) we have inequalities

1
6 · log(q) ≤ 1

6 · log(q�2) ≤ 1
6 · log(q∀)

≤ (1 + εE) · (log-diffX(xE) + log-condD(xE)) + CK

— where we write

εE
def
= (60δ)2 · log(2δ·(log(q∀)))

(log(q∀))1/2
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[i.e., so εE depends on the integer d, as well as on the elliptic curve
EF !], and we observe, relative to the notation of Theorem 1.10, that
[it follows tautologically from the definitions that] we have an equality
log-diffX(xE) = log(dFtpd), as well as inequalities

log(fFtpd) ≤ log-condD(xE) ≤ log(fFtpd) + log(2l).

(iii) The positive real number Hunif of (ii) [which is independent of KV !]
may be chosen in such a way that the following property is satisfied: Let d be a
positive integer, εd and ε positive real numbers ≤ 1. Then there exists a finite
subset Excε,d ⊆ UX(Q)≤d which depends only on KV , ε, d, and εd such that, in the

notation of (ii), the function “log(q∀(−))” of (i) is

≤ Hunif · ε−3 · ε−3
d · d4+εd +HK

on Excε,d, and, moreover, the invariant εE associated to an elliptic curve EF as
in (ii) [i.e., that satisfies certain conditions which depend on KV and d] satisfies
the inequality εE ≤ ε whenever the point xE ∈ UX(F ) satisfies the condition xE �∈
Excε,d.

Proof. First, we consider assertion (i). We begin by observing that, in light of the
condition (∗j-inv) that was imposed on KV , it follows immediately from the various
definitions involved that

log(q
�2
(−)) ≈ log(q∀(−))

— where we observe that the function “log(q∀(−))” may be identified with the func-

tion “deg∞” of the discussion preceding [GenEll], Proposition 3.4 — on KV ⊆
UX(Q). In a similar vein, since the support of KV contains the unique archimedean
prime of Q, it follows immediately from the various definitions involved [cf. also
Remark 2.3.1, (vi), below] that

log(q∀(−)) ≈ ht∞

on KV ⊆ UX(Q) [cf. the argument of the final paragraph of the proof of [GenEll],

Lemma 3.7]. Thus, we conclude that log(q
�2
(−)) ≈ log(q∀(−)) ≈ ht∞ on KV ⊆

UX(Q). Finally, since [as is well-known] the pull-back to X of the divisor at infinity
of the natural compactification (Mell)Q of (Mell)Q is of degree 6, while the line
bundle ωX(D) is of degree 1, the equality of BD-classes 1

6 · ht∞ ≈ htωX(D) on

KV ⊆ UX(Q) follows immediately from [GenEll], Proposition 1.4, (i), (iii). This
completes the proof of assertion (i).

Next, we consider assertion (ii). First, let us recall that if the once-punctured
elliptic curve associated to EF fails to admit an F -core, then there are only four
possibilities for the j-invariant of EF [cf. [CanLift], Proposition 2.7]. Thus, if we
take the set Excd to be the [finite!] collection of points corresponding to these four
j-invariants, then we may assume that the once-punctured elliptic curve associated
to EF admits an F -core, hence, in particular, does not have any automorphisms
of order > 2 over Q. In the discussion to follow, it will be necessary to enlarge
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the finite set Excd several times, always in a fashion that depends only on KV , d,
and εd [i.e., but not on xE !] and in such a way that the function “log(q∀(−))” of

(i) is ≤ Hunif · ε−3
d · d4+εd +HK on Excd for some positive real number Hunif that

is independent of KV and some positive real number HK that depends only on KV

[i.e., but not on d or εd!].

Next, let us write

h
def
= log(q∀) = 1

[F :Q] ·
∑

v∈V(F )non

hv · fv · log(pv)

— that is to say, hv = 0 for those v at which EF has good reduction; hv ∈ N≥1

is the local height of EF [cf. [GenEll], Definition 3.3] for those v at which EF has
bad multiplicative reduction. Now it follows [by assertion (i); [GenEll], Proposition
1.4, (iv)] that the inequality h1/2 < ξprm [cf. the notation of Proposition 2.1, (ii)]
implies that there is only a finite number of possibilities for the j-invariant of EF .
Thus, by possibly enlarging the finite set Excd [in a fashion that depends only on
KV , d, and εd and in such a way that h ≤ Hunif on Excd for some positive real
number Hunif that is independent of KV ], we may assume without loss of generality
that the inequality

h1/2 ≥ ξprm ≥ 5

holds. Thus, since [F : Q] ≤ δ [cf. the properties (E3), (E4), (E5) in the proof of
Theorem 1.10], it follows that

δ · h1/2 ≥ [F : Q] · h1/2 =
∑
v

h−1/2 · hv · fv · log(pv) ≥
∑
v

h−1/2 · hv · log(pv)

≥
∑

hv ≥ h1/2

h−1/2 · hv · log(pv) ≥
∑

hv ≥ h1/2

log(pv)

and

2δ · h1/2 · log(2δ · h) ≥ 2 · [F : Q] · h1/2 · log(2 · [F : Q] · h)

≥
∑
hv �=0

2 · h−1/2 · log(2 · hv · fv · log(pv)) · hv · fv · log(pv)

≥
∑
hv �=0

h−1/2 · log(hv) · hv ≥
∑

hv ≥ h1/2

h−1/2 · log(hv) · hv

≥
∑

hv ≥ h1/2

log(hv)

— where the sums are all over v ∈ V(F )non [possibly subject to various conditions,
as indicated], and we apply the elementary estimate 2 · log(pv) ≥ 2 · log(2) =
log(4) ≥ 1 [cf. the property (E6) in the proof of Theorem 1.10].

Thus, in summary, we conclude from the estimates made above that if we take

A

to be the [finite!] set of prime numbers p such that p either
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(S1) is ≤ h1/2,
(S2) divides a nonzero hv for some v ∈ V(F )non, or
(S3) is equal to pv for some v ∈ V(F )non for which hv ≥ h1/2,

then it follows from Proposition 2.1, (ii), together with our assumption that h1/2 ≥
ξprm, that, in the notation of Proposition 2.1, (ii),

θA ≤ 2 · h1/2 + δ · h1/2 + 2δ · h1/2 · log(2δ · h)
≤ 4δ · h1/2 · log(2δ · h)
≤ −ξprm + 5δ · h1/2 · log(2δ · h)

— where we apply the estimates δ ≥ 2 and log(2δ · h) ≥ log(4) ≥ 1 [cf.
the property (E6) in the proof of Theorem 1.10]. In particular, it follows from
Proposition 2.1, (i), (ii), together with our assumption that h1/2 ≥ 5 ≥ 1, that
there exists a prime number l such that

(P1) (5 ≤) h1/2 ≤ l ≤ 10δ · h1/2 · log(2δ · h) (≤ 20 · δ2 · h2) [cf. the
condition (C1) in the statement of Corollary 2.2];

(P2) l does not divide any nonzero hv for v ∈ V(F )non;
(P3) if l = pv for some v ∈ V(F )non, then hv < h1/2.

Next, let us observe that, again by possibly enlarging the finite set Excd [in a
fashion that depends only on KV , d, and εd and in such a way that h ≤ HK on
Excd for some positive real number HK that depends only on KV ], we may assume
without loss of generality that, in the terminology of [GenEll], Lemma 3.5,

(P4) EF does not admit an l-cyclic subgroup scheme.

Indeed, the existence of an l-cyclic subgroup scheme of EF would imply that

l−2
24 · log(q∀) ≤ 2 · log(l) + TK

— where we apply assertion (i), (P2), the displayed inequality of [GenEll], Lemma
3.5, and the final inequality of the display of [GenEll], Proposition 3.4; we take the
“ε” of [GenEll], Lemma 3.5, to be 1; we write TK for the positive real number [which
depends only on the choice of the compactly bounded subset KV ] that results from
the various “bounded discrepancies” implicit in these inequalities. Since l ≥ 5 [cf.
(P1)], it follows that 1 ≤ 2 · log(l) ≤ 48 · l−2

24 [cf. the property (E6) in the proof of
Theorem 1.10], and hence that the inequality of the preceding display implies that
log(q∀) is bounded. On the other hand, [by assertion (i); [GenEll], Proposition 1.4,
(iv)] this implies that there is only a finite number of possibilities for the j-invariant
of EF . This completes the proof of the above observation.

Next, let us note that it follows immediately from (P1), together with Propo-
sition 2.1, (i), that

h1/2 · log(l) ≤ h1/2 · log(20 · δ2 · h2) ≤ 2 · h1/2 · log(5δ · h)
≤ 8 · h1/2 · log(2 · δ1/4 · h1/4) ≤ 8 · h1/2 · 2 · δ1/4 · h1/4

= 16 · δ1/4 · h3/4
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— where we apply the estimates 20 ≤ 52 and 5 ≤ 24. In particular, we observe
that, again by possibly enlarging the finite set Excd [in a fashion that depends only
on KV , d, and εd and in such a way that h ≤ Hunif ·d+HK on Excd for some positive
real number Hunif that is independent of KV and some positive real number HK
that depends only on KV ], we may assume without loss of generality that

(P5) if we write Vbad
mod for the set of nonarchimedean valuations ∈ Vmod

def
=

V(Fmod) that do not divide 2l and at which EF has bad multiplicative
reduction, then Vbad

mod �= ∅.

Indeed, if Vbad
mod = ∅, then it follows, in light of the definition of h, from (P3),

assertion (i), and the computation performed above, that

h ≈ log(q�2) ≤ h1/2 · log(l) ≤ 16 · δ1/4 · h3/4

— an inequality which implies that h1/4, hence h itself, is bounded. On the other
hand, [by assertion (i); [GenEll], Proposition 1.4, (iv)] this implies that there is
only a finite number of possibilities for the j-invariant of EF . This completes the
proof of the above observation. This property (P5) implies that

(P6) the image of the outer homomorphism Gal(Q/F ) → GL2(Fl) determined
by the l-torsion points of EF contains the subgroup SL2(Fl) ⊆ GL2(Fl).

Indeed, since, by (P5), EF has bad multiplicative reduction at some valuation ∈
Vbad

mod �= ∅, (P6) follows formally from (P2), (P4), and [GenEll], Lemma 3.1, (iii)
[cf. the proof of the final portion of [GenEll], Theorem 3.8].

Now it follows formally from (P1), (P2), (P5), and (P6) that, if one takes “F”
to be Q, “F” to be the number field F of the above discussion, “XF ” to be the
once-punctured elliptic curve associated to EF , “l” to be the prime number l of
the above discussion, and “Vbad

mod” to be the set Vbad
mod of (P5), then there exist data

“CK”, “V”, and “ε” such that all of the conditions of [IUTchI], Definition 3.1, (a),
(b), (c), (d), (e), (f), are satisfied, and, moreover, that

(P7) the resulting initial Θ-data

(F/F, XF , l, CK , V, Vbad
mod, ε)

satisfies the various conditions in the statement of Theorem 1.10.

Here, we note in passing that the crucial existence of data “V” and “ε” satisfying the
requisite conditions follows, in essence, as a consequence of the fact [i.e., (P6)] that
the Galois action on l-torsion points contains the full special linear group SL2(Fl).

In light of (P7), we may apply Theorem 1.10 [cf. also Remark 1.10.7, (i)] to
conclude that

1
6 · log(q) ≤ (1 + 20·dmod

l ) · (log(dFtpd) + log(fFtpd)) + 20 · (d∗mod · l + ηprm)

≤ (1 + δ · h−1/2) · (log(dFtpd) + log(fFtpd))

+ 200 · δ2 · h1/2 · log(2δ · h) + 20ηprm
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— where we apply (P1), as well as the estimates 20 · dmod ≤ d∗mod ≤ δ.

Next, let us observe that it follows from (P3), together with the computation
of the discussion preceding (P5), that

1
6 · log(q�2) − 1

6 · log(q) ≤ 1
6 · h1/2 · log(l) ≤ 1

3 · h1/2 · log(5δ · h)
≤ h1/2 · log(2δ · h)

— where we apply the estimates 1 ≤ h and 5 ≤ 23. Thus, since, by assertion (i), the
difference 1

6 ·log(q∀)− 1
6 ·log(q�2) is bounded by some positive real number BK [which

depends only on the choice of the compactly bounded subset KV ], we conclude that

1
6 · h = 1

6 · log(q∀) ≤ (1 + δ · h−1/2) · (log(dFtpd) + log(fFtpd))

+ (15δ)2 · h1/2 · log(2δ · h) + 1
2 · CK

≤ (1 + δ · h−1/2) · (log(dFtpd) + log(fFtpd))

+ 1
6 · h · 2

5 · (60δ)2 · h−1/2 · log(2δ · h) + 1
2 · CK

— where we write CK
def
= 40ηprm + 2BK, and we apply the estimate 6 · 5 ≤ 2 · 42.

Now let us set

εE
def
= (60δ)2 · h−1/2 · log(2δ · h) (≥ 5 · δ · h−1/2);

ε∗d
def
= 1

16 · εd (< 1
2 ≤ 1)

— where we apply the estimates h ≥ 1, log(2δ · h) ≥ log(2δ) ≥ log(4) ≥ 1
[cf. the property (E6) in the proof of Theorem 1.10], and εd ≤ 1. Note that the
inequality

1 < εE = (60δ)2 · h−1/2 · log(2δ · h)
= (ε∗d)

−1 · (60δ)2 · h−1/2 · log(2ε∗d · δε∗d · hε∗d)

≤ (ε∗d)
−1 · (60δ)2+ε∗d · h−(1/2−ε∗d)

≤
{
(ε∗d)

−3 · (60δ)4+εd · h−1
}(1/2−ε∗d)

— where we apply Proposition 2.1, (i), together with the estimates

1
1
2 − ε∗d

=
16

8− εd
≤ 3;

2 + ε∗d
1
2 − ε∗d

=
32 + εd
8− εd

≤ 4 + εd ≤ 5

[both of which are consequences of the fact that 0 < εd ≤ 1 ≤ 3], as well as the
estimates 0 < ε∗d ≤ 1, 60δ ≥ 2δ ≥ 1, and h ≥ 1 — implies a bound on h, hence,
[by assertion (i); [GenEll], Proposition 1.4, (iv)] that there is only a finite number
of possibilities for the j-invariant of EF . Thus, by possibly enlarging the finite set
Excd [in a fashion that depends only on KV , d, and εd and in such a way that
h ≤ Hunif · ε−3

d · d4+εd + HK on Excd for some positive real number Hunif that is
independent of KV and some positive real number HK that depends only on KV ],
we may assume without loss of generality that εE ≤ 1.
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Thus, in summary, we obtain inequalities

1
6 · h ≤ (1− 2

5 · εE)−1(1 + 1
5 · εE) · (log(dFtpd) + log(fFtpd)) + (1− 2

5 · εE)−1 · 1
2 · CK

≤ (1 + εE) · (log(dFtpd) + log(fFtpd)) + CK

by applying the estimates

1 + 1
5 · εE

1− 2
5 · εE

≤ 1 + εE ; 1− 2
5 · εE ≥ 1

2

— both of which are consequences of the fact that 0 < εE ≤ 1. Thus, in light of
(P1), together with the observation that it follows immediately from the definitions
[cf. also Proposition 1.8, (vi)] that we have an equality log-diffX(xE) = log(dFtpd),
as well as inequalities log(fFtpd) ≤ log-condD(xE) ≤ log(fFtpd)+log(2l), we conclude
that both of the conditions (C1), (C2) in the statement of assertion (ii) hold for
CK as defined above. This completes the proof of assertion (ii). Finally, assertion
(iii) follows immediately by applying the argument applied above in the proof of
assertion (ii) in the case of the inequality “1 < εE” to the inequality “ε < εE”. ©

Remark 2.2.1.

(i) Before proceeding, we pause to examine the asymptotic behavior of the
bound obtained in Corollary 2.2, (ii), in the spirit of the discussion of Remark
1.10.5, (ii). For simplicity, we assume that Ftpd = Q [so dmod = 1]; we write

h
def
= log(q∀) [cf. the proof of Corollary 2.2, (ii)] and δ

def
= log-diffX(xE) +

log-condD(xE) = log-condD(xE) [i.e., notation that is closely related to the nota-
tion of Remark 1.10.5, (ii), but differs substantially from the notation of Corollary
2.2, (ii)]. Thus, it follows immediately from the definitions that 1 < log(3) ≤ δ
and 1 < log(3) ≤ h. In particular, the bound under consideration may be written
in the form

1
6 · h ≤ δ + ∗ · δ1/2 · log(δ)

— where “∗” is to be understood as denoting a fixed positive real number; we observe
that the ratio h/δ is always a positive real number which is bounded below by the
definition of h and δ and bounded above precisely as a consequence of the bound
under consideration. In this context, it is of interest to observe that the form of the
“ε term” δ1/2 · log(δ) is strongly reminiscent of well-known intepretations of the
Riemann hypothesis in terms of the asymptotic behavior of the function defined
by considering the number of prime numbers less than a given natural number.
Indeed, from the point of view of weights [cf. also the discussion of Remark 2.2.2
below], it is natural to regard the [logarithmic] height of a line bundle as an object
that has the same weight as a single Tate twist, or, from a more classical point of
view, “2πi” raised to the power 1. On the other hand, again from the point of view
of weights, the variable “s” of the Riemann zeta function ζ(s) may be thought of
as corresponding precisely to the number of Tate twists under consideration, so a
single Tate twist corresponds to “s = 1”. Thus, from this point of view, “s = 1

2”,
i.e., the critical line that appears in the Riemann hypothesis, corresponds precisely
to the square roots of the [logarithmic] heights under consideration, i.e., to h1/2,
δ1/2. Moreover, from the point of view of the computations that underlie Theorem
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1.10 and Corollary 2.2, (ii) [cf., especially, the proof of Corollary 2.2, (ii); Steps (v),
(viii) of the proof of Theorem 1.10; the contribution of “bi” in the second displayed
inequality of Proposition 1.4, (iii)], this δ1/2 arises as a result of a sort of “balance”,
or “duality” — i.e., that occurs as one increases the size of the auxiliary prime l
[cf. the discussion of Remark 1.10.5, (ii)] — between the archimedean decrease
in the “ε term” δ

l and the nonarchimedean increase in the “ε term” l [i.e., that
arises from a certain estimate, in the proof of Proposition 1.2, (i), (ii), of the radius
of convergence of the p-adic logarithm]. That is to say, such a global arithmetic
duality is reminiscent of the functional equation of the Riemann zeta function
[cf. the discussion of (iii) below].

(ii) In [vFr], §2, it is conjectured that, in the notation of the discussion of (i),

lim sup
log

(
1
6 ·h−δ

)
log(h) = 1

2

and observed that the “ 1
2” that appears here is strongly reminiscent of the “ 1

2”
that appears in the Riemann hypothesis. In the situation of Corollary 2.2, (ii),
bounds are only obtained on abc sums that belong to the compactly bounded
subset KV under consideration; such bounds, i.e., as discussed in (i), thus imply
that this lim sup is ≤ 1

2 . On the other hand, it is shown in [vFr], §2 [cf. also the
references quoted in [vFr]], that, if one allows arbitrary abc sums [i.e., which are
not necessarily assumed to be contained in a single compactly bounded subset KV ],
then this lim sup is ≥ 1

2 . It is not clear to the author at the time of writing whether

or not such estimates [i.e., to the effect that the lim sup under consideration is ≥ 1
2 ]

hold even if one imposes the restriction that the abc sums under consideration be
contained in a single compactly bounded subset KV .

(iii) In the well-known classical theory of the Riemann zeta function, the
Riemann zeta function is closely related to the theta function, i.e., by means
of the Mellin transform. In light of the central role played by theta functions
in the theory of the present series of papers, it is tempting to hope, especially
in the context of the observations of (i), (ii), that perhaps some extension of the
theory of the present series of papers — i.e., some sort of “inter-universal Mellin
transform” — may be obtained that allows one to relate the theory of the present
series of papers to the Riemann zeta function.

(iv) In the context of the discussion of (iii), it is of interest to recall that, rela-
tive to the analogy between number fields and one-dimensional function fields over
finite fields, the theory of the present series of papers may be thought of as being
analogous to the theory surrounding the derivative of a lifting of the Frobenius
morphism [cf. the discussion of [IUTchI], §I4; [IUTchIII], Remark 3.12.4]. On the
other hand, the analogue of the Riemann hypothesis for one-dimensional func-
tion fields over finite fields may be proven by considering the elementary geometry
of the [graph of the] Frobenius morphism. This state of affairs suggests that
perhaps some sort of “integral” of the theory of the present series of papers could
shed light on the Riemann hypothesis in the case of number fields.

(v) One way to summarize the point of view discussed in (i), (ii), and (iii)
is as follows: The asymptotic behavior discussed in (i) suggests that perhaps one
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should expect that the inequality constituted by well-known intepretations of the
Riemann hypothesis in terms of the asymptotic behavior of the function defined
by considering the number of prime numbers less than a given natural number may
be obtained as some sort of “restriction”

(ABC inequality)|canonical number

of some sort of “ABC inequality” [i.e., some sort of bound of the sort obtained
in Corollary 2.2, (ii)] to some sort of “canonical number” [i.e., where the term
“number” is to be understood as referring to an abc sum]. Here, the descriptive
“canonical” is to be understood as expressing the idea that one is not so much
interested in considering a fixed explicit “number/abc sum”, but rather some sort
of suitable abstraction of the sort of sequence of numbers/abc sums that gives rise
to the lim sup value of “ 1

2” discussed in (ii). Of course, it is by no means clear
precisely how such an “abstraction” should be formulated, but the idea is that it
should represent

some sort of average over all possible addition operations

in the number field [in this case, Q] under consideration or [perhaps equivalently]

some sort of “arithmetic measure or distribution” constituted by
such a collection of all possible addition operations that somehow
amounts to a sort of arithmetic analogue of the measure that gives rise to
the classical Mellin transform

[i.e., that appears in the discussion of (iii)].

Remark 2.2.2. In the context of the discussion of weights in Remark 2.2.1, (i),
it is of interest to recall the significance of the Gaussian integral∫ ∞

−∞
e−x2

dx =
√
π

in the theory of the present series of papers [cf. [IUTchII], Introduction; [IUTchII],
Remark 1.12.5, as well as Remark 1.10.1 of the present paper]. Indeed, typically
discussions of the Riemann zeta function ζ(s), or more general L-functions, in the
context of conventional arithmetic geometry are concerned principally with the
behavior of such functions at integral values [i.e., ∈ Z] of the variable s. Such
integral values of the variable s correspond to integral Tate twists, i.e., at a more
concrete level, to integral powers of the quantity 2πi. If one neglects nonzero factors
∈ Q(i), then such integral powers may be regarded as integral powers of π [or 2π].
At the level of classical integrals, the notion of a single Tate twist may be thought
of as corresponding to the integral∫

S1
dθ = 2π

over the unit circle S1; at the level of schemes, the notion of a single Tate twist may
be thought of as corresponding to the scheme Gm. On the other hand, whereas



INTER-UNIVERSAL TEICHMÜLLER THEORY IV 51

the conventional theory of Tate twists in arithmetic geometry only involves integral
powers of a single Tate twist, i.e., corresponding, in essence, to integral powers
of π, the Gaussian integral may be thought of as a sort of fundamental integral
representation of the notion of a “Tate semi-twist”. From this point of view,
scheme-theoretic Hodge-Arakelov theory may be thought of as a sort of fundamen-
tal scheme-theoretic represention of the notion of a “Tate semi-twist” [cf. the
discussion of [IUTchII], Remark 1.12.5]. Thus, in summary,

(a) the Gaussian integral,
(b) scheme-theoretic Hodge-Arakelov theory,
(c) the inter-universal Teichmüller theory developed in the present

series of papers, and
(d) the Riemann hypothesis,

may all be thought of as “phenomena of weight 1
2”, i.e., at a concrete level,

phenomena that revolve around arithmetic versions of “
√
π”. Moreover, we observe

that in the first three of these four examples, the essential nature of the notion of
“weight 1

2” may be thought of as being reflected in some sort of exponential of a
quadratic form. This state of affairs is strongly reminiscent of

(1) the Griffiths semi-transversality of the crystalline theta object
that occurs in scheme-theoretic Hodge-Arakelov theory [cf. [HASurII],
Theorem 2.8; [IUTchII], Remark 1.12.5, (i)], which corresponds essentially
[cf. the discussion of the proof of [HASurII], Theorem 2.10] to the quadratic
form that appears in the exponents of the well-known series expansion of
the theta function;

(2) the quadratic nature of the commutator of the theta group, which
is applied, in [EtTh] [cf. the discussion of [IUTchIII], Remark 2.1.1], to
derive the various rigidity properties which are interpreted, in [IUTchII],
§1, as multiradiality properties — an interpretation that is strongly rem-
iniscent, if one interprets “multiradiality” in terms of “connections” and
“parallel transport” [cf. [IUTchII], Remark 1.7.1], of the quadratic form
discussed in (1);

(3) the essentially quadratic nature of the “ε term” ∗ · δ
l + ∗ · l [which, we

recall, occurs at the level of addition of heights, i.e., log-volumes!] in the
discussion of Remark 1.10.5, (ii).

Remark 2.2.3. The discussion of Remark 2.2.1 centers around the content of
Corollary 2.2, (ii), in the case of elliptic curves defined over Q. On the other hand,
if, in the context of Corollary 2.2, (ii), (iii), one considers the case where d is an
arbitrary positive integer [i.e., which is not necessarily bounded, as in the situation
of Corollary 2.3 below!], then the inequalities obtained in (C2) of Corollary 2.2,
(ii), may be regarded, by applying Corollary 2.2, (iii), as a sort of “weak version”
of the so-called “uniform ABC Conjecture”. That is to say, these inequalities
constitute only a “weak version” in the sense that they are restricted to rational
points that lie in the compactly bounded subset KV , and, moreover, the bounds
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given for the function “log(q∀(−))” [i.e., in essence, the “height”] on Excd and Excε,d
depend on the positive integer d [cf. also Remark 2.3.2, (i), below].

Remark 2.2.4. Before proceeding, it is perhaps of interest to consider the ideas
discussed in Remarks 2.2.1, 2.2.3 above in the context of the analogy between the
theory of the present series of papers and the p-adic Teichmüller theory of [pOrd],
[pTeich] [cf. also [InpTch]].

(i) The analogy between the theory of the present series of papers and the p-
adic Teichmüller theory of [pOrd], [pTeich] [cf. also [InpTch]] is discussed in detail in
[IUTchIII], Remark 1.4.1, (iii); [IUTchIII], Remark 3.12.4. In a word, this discussion
concerns similarities between the log-theta-lattice considered in the present series of
papers and the canonical Frobenius lifting on the ordinary locus of a canonical curve
of the sort that appears in the theory of [pOrd]. Such a canonical curve is associated,
in the theory of [pOrd], to a hyperbolic curve equipped with a nilpotent ordinary
indigenous bundle over a perfect field of positive characteristic p. On the other
hand, the theory of [pOrd] also addresses the universal case, i.e., of the tautological
hyperbolic curve equipped with a nilpotent ordinary indigenous bundle over the
moduli stack of such data in positive characteristic. In particular, one constructs,
in the theory of [pOrd], a canonical Frobenius lifting over a canonical p-adic lifting
of this moduli stack. This moduli stack is smooth of dimension 3g − 3 + r [i.e.,
in the case of hyperbolic curves of type (g, r)] over Fp, hence, in particular, is far
from perfect [i.e., as an algebraic stack in positive characteristic]. Thus, in some
sense,

the gap between the theory of the present series of papers, on the one
hand, and the notion discussed in Remark 2.2.1, (v), of a “canonical
number/arithmetic measure/distribution”, on the other, may be
understood, in the context of the analogy with p-adic Teichmüller theory,
as corresponding to the gap between the theory of [pOrd] specialized to the
case of “canonical curves”, i.e., over perfect base fields, and the full, non-
specialized version of the theory of [pOrd], i.e., which concerns canonical
Frobenius liftings over the non-perfect moduli stack of hyperbolic curves
equipped with a nilpotent ordinary indigenous bundle.

That is to say, in a word, one has a correspondence

“canonical number” ←→ modular Frobenius liftings.

(ii) In general, the gap between perfect and non-perfect schemes in positive
characteristic is reflected precisely in the extent to which the Frobenius morphism
on the scheme under consideration fails to be an isomorphism. Put another way,
the “phenomenon” of non-perfect schemes in positive characteristic may be thought
of as a reflection of the distortion arising from the Frobenius morphism in positive
characteristic. In the context of the theory of the present series of papers [cf.
[IUTchIII], Remark 1.4.1, (iii)], the Frobenius morphism in positive characteristic
corresponds to the log-link. Moreover, in the context of the inequalities obtained
in Theorem 1.10, the term “∗ · l” [cf. the discussion of Remark 1.10.5, (ii)] arises,
in the computations that underlie the proof of Theorem 1.10, precisely by applying
the prime number theorem [i.e., Proposition 1.6] to sum up the log-volumes of the
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log-shells [cf. Propositions 1.2, (ii); 1.4, (iii)] at various nonarchimedean primes of
the number field. In this context, we make the following observations:

· These log-volumes of log-shells may be thought of as numerical measures
of the distortions of the integral structure [i.e., relative to the “arithmetic
holomorphic” integral structures determined by the various local rings of
integers “O”] that arise from the log-link.

· Estimates arising from the prime number theorem are closely related to
the aspects of the Riemann zeta function that are discussed in Remark
2.2.1.

· The prime number l is, ultimately, in the computations of Corollary 2.2,
(ii) [cf., especially, condition “(C1)”], taken to be roughly of the order
of the square root of the height of the elliptic curve under consideration.
That is to say, since the height of an elliptic curve “roughly controls”
[i.e., up to finitely many possibilities] the moduli of the elliptic curve,
the prime number l may be thought of as a sort of rough numerical
representation of the moduli of the elliptic curve under consideration.

Thus, in summary, these observations strongly support the point of view that

the computations that underlie the proof of Theorem 1.10 may be thought
of as constituting one convincing piece of evidence for the point of view
discussed in (i) above.

(iii) In the context of the discussion of (i), (ii), it is of interest to recall that
the modular Frobenius liftings of [pOrd] are not defined over the algebraic moduli
stack of hyperbolic curves over Zp, but rather over the p-adic formal algebraic stack
[which is formally étale over the corresponding algebraic moduli stack of hyperbolic
curves over Zp] constituted by the canonical lifting to Zp of the moduli stack of
hyperbolic curves equipped with a nilpotent ordinary indigenous bundle. That is
to say,

the gap between this [“p-adically analytic”] p-adic formal algebraic stack
parametrizing “ordinary” data and the corresponding algebraic moduli
stack of hyperbolic curves over Zp is highly reminiscent, in the context of
Corollary 2.2, (ii) [cf. also Remark 2.2.3], of the gap between the [“arith-
metically analytic”] compactly bounded subsets “KV ” [i.e., consisting
of elliptic curves that satisfy the condition of being in “sufficiently gen-
eral position” — a condition that may be thought of as a sort of “global
arithmetic version of ordinariness”] and the entire set of algebraic points
“Mell(Q)”.

Ultimately, this gap between “KV ” and “Mell(Q)” will be bridged, in Corollary
2.3 below, by applying [GenEll], Theorem 2.1, which may be thought of as a sort
of arithmetic analytic continuation by means of [noncritical] Belyi maps [cf.
the discussion of Belyi maps in the Introduction to [GenEll]]. This state of affairs
is reminiscent of the “arithmetic analytic continuation via Belyi maps” that occurs
in the theory of [AbsTopIII] [i.e., in essence, the theory of Belyi cuspidalizations]
that is applied in [IUTchI], §5 [cf. [IUTchI], Remark 5.1.4]. Finally, in this context,
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we recall that the open immersion “κ̂” that appears in the discussion towards the
end of [InpTch], §2.6 — i.e., which embeds a sort of perfection of the p-adic formal
algebraic stack discussed above into an essentially algebraic stack given by a certain
pro-finite covering of the corresponding algebraic moduli stack of hyperbolic curves
over Zp determined by considering representations of the geometric fundamental
group into PGL2(Zp) — may be thought of as a sort of p-adic analytic continuation
to this corresponding algebraic moduli stack of the essentially “p-adically analytic”
theory of modular Frobenius liftings developed in [pOrd].

(iv) Finally, in the context of the discussion of (i), (ii), (iii), we observe that the
issue discussed in Remark 2.2.1 of considering the asymptotic behavior of the theory
of the present series of papers when l → ∞ may be thought of as the problem of
understanding how the theory of the present series of papers behaves

as one passes from the discrete approximation of the elliptic curve
under consideration constituted by the l-torsion points of the elliptic curve
to the “full continuous theory”

[cf. the discussion of [IUTchI], Remark 6.12.3, (i) ; [HASurI], §1.3.4]. This point
of view is of interest in light of the theory of Bernoulli numbers, i.e., which, on
the one hand, is, as is well-known, closely related to the values [at positive even
integers] of the Riemann zeta function [cf. the discussion of Remark 2.2.1], and,
on the other hand, is closely related to the passage from the

discrete difference operator f(x) �→ f(x+ 1)− f(x)

— for, say, real-valued real analytic functions f(−) on the real line — to the

continuous derivative operator f(x) �→ d
dxf(x)

— where we recall that the operator f(x) �→ f(x + 1) may be thought of as the

operator “e
d
dx ” obtained by exponentiating this continuous derivative operator.

We are now ready to state and prove the main theorem of the present §2, which
may also be regarded as the main application of the theory developed in the present
series of papers.

Corollary 2.3. (Diophantine Inequalities) Let X be a smooth, proper,

geometrically connected curve over a number field; D ⊆ X a reduced divisor; UX
def
=

X\D; d a positive integer; ε ∈ R>0 a positive real number. Write ωX for the
canonical sheaf on X. Suppose that UX is a hyperbolic curve, i.e., that the degree
of the line bundle ωX(D) is positive. Then, relative to the notation reviewed above,
one has an inequality of “bounded discrepancy classes”

htωX(D) � (1 + ε)(log-diffX + log-condD)

of functions on UX(Q)≤d — i.e., the function (1 + ε)(log-diffX + log-condD) −
htωX(D) is bounded below by a constant on UX(Q)≤d [cf. [GenEll], Definition 1.2,
(ii), as well as Remark 2.3.1, (ii), below].

Proof. One verifies immediately that the content of the statement of Corollary 2.3
coincides precisely with the content of [GenEll], Theorem 2.1, (i). Thus, it follows
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from the equivalence of [GenEll], Theorem 2.1, that, in order to complete the proof
of Corollary 2.3, it suffices to verify that [GenEll], Theorem 2.1, (ii), holds. That
is to say, we may assume without loss of generality that:

· X = P1
Q is the projective line over Q;

· D ⊆ X is the divisor consisting of the three points “0”, “1”, and “∞”;
· KV ⊆ UX(Q) is a compactly bounded subset [cf. Remark 2.3.1, (vi),
below] whose support contains the nonarchimedean prime “2”;
· KV satisfies the condition “(∗j-inv)” of Corollary 2.2.

[Here, we note, with regard to the condition “(∗j-inv)” of Corollary 2.2, that this

condition only concerns the behavior of KV

⋂
UX(Q)≤d as d varies; that is to say,

this condition is entirely vacuous in situations, i.e., such as the situation considered
in [GenEll], Theorem 2.1, (ii), in which one is only concerned with KV

⋂
UX(Q)≤d

for a fixed d.] Then it suffices to show that the inequality of BD-classes of functions
[cf. [GenEll], Definition 1.2, (ii), as well as Remark 2.3.1, (ii), below]

htωX(D) � (1 + ε)(log-diffX + log-condD)

holds on KV

⋂
UX(Q)≤d. But such an inequality follows immediately, in light of

the [relevant] equality of BD-classes of Corollary 2.2, (i), from Corollary 2.2, (ii) [cf.
condition (C2)], (iii) [where we note that it follows immediately from the various
definitions involved that dmod ≤ d]. This completes the proof of Corollary 2.3. ©

Remark 2.3.1. We take this opportunity to correct some unfortunate misprints
in [GenEll].

(i) The notation “ordv(−) : Fv → Z” in the final sentence of the first paragraph
following [GenEll], Definition 1.1, should read “ordv(−) : F×

v → Z”.

(ii) In [GenEll], Definition 1.2, (ii), the non-resp’d and first resp’d items in the
display should be reversed! That is to say, the notation “α �F β” corresponds to
“α(x)− β(x) ≤ C”; the notation “α �F β” corresponds to “β(x)− α(x) ≤ C”.

(iii) The first portion of the first sentence of the statement of [GenEll], Corollary
4.4, should read: “Let Q be an algebraic closure of Q; . . . ”.

(iv) The “log-diffMell
([EL]))” in the second inequality of the final display of

the statement of [GenEll], Corollary 4.4, should read “log-diffMell
([EL])”.

(v) The equality

htE ≈ (deg(E)/deg(ωX)) · htωX

implicit in the final “≈” of the final display of the proof of [GenEll], Theorem 2.1,
should be replaced by an inequality

htE � 2 · (deg(E)/deg(ωX)) · htωX

[which follows immediately from [GenEll], Proposition 1.4, (ii)], and the expression
“deg(E)/deg(ωX)” in the inequality imposed on the choice of ε′ should be replaced
by the expression “2 · (deg(E)/deg(ωX))”.
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(vi) Suppose that we are in the situation of [GenEll], Example 1.3, (ii). Let
U ⊆ X be an open subscheme. Then a “compactly bounded subset”

KV ⊆ U(Q) (⊆ X(Q))

of U(Q) is to be understood as a subset which forms a compactly bounded subset
of X(Q) [i.e., in the sense discussed in [GenEll], Example 1.3, (ii)] and, moreover,

satisfies the property that for each v ∈ V arc def
= V

⋂
V(Q)arc (respectively, v ∈

V non def
= V

⋂
V(Q)non), the compact domain Kv ⊆ Xarc (respectively, Kv ⊆ X(Qv))

is, in fact, contained in

U(C) ⊆ X(C) = Xarc (respectively, U(Qv) ⊆ X(Qv)).

In particular, this convention should be applied to the use of the term “compactly
bounded subset” in the statements of [GenEll], Theorem 2.1; [GenEll], Lemma 3.7;
[GenEll], Theorem 3.8; [GenEll], Corollary 4.4, as well as in the present paper [cf.
the statement of Corollary 2.2; the proof of Corollary 2.3]. Although this convention
was not discussed explicitly in [GenEll], Example 1.3, (ii), it is, in effect, discussed
explicitly in the discussion of “compactly bounded subsets” at the beginning of the
Introduction to [GenEll]. Moreover, this convention is implicit in the arguments
involving compactly bounded subsets in the proof of [GenEll], Theorem 2.1.

(vii) In the discussion following the second display of [GenEll], Example 1.3,
(ii), the phrase “(respectively, X(Qv))” should read “(respectively, X(Qv))”.

(viii) The first display of the paragraph immediately following [GenEll], Re-
mark 3.3.1, should read as follows:

|α|2 def
=
∣∣∣ ∫

Ev

α ∧ α
∣∣∣

[i.e., the integral should be replaced by the absolute value of the integral].

Remark 2.3.2.

(i) The reader will note that, by arguing with a “bit more care”, it is not
difficult to give stronger versions of the various estimates that occur in Theorem
1.10; Corollaries 2.2, 2.3 and their proofs. Such stronger estimates are, however,
beyond the scope of the present series of papers, so we shall not pursue this topic
further in the present paper.

(ii) On the other hand, we observe that the constant “1” in the inequality of the
display of Corollary 2.3 cannot be improved — cf. the examples constructed in
[Mss]; the discussion of Remark 1.10.5, (ii), (iii). This observation is closely related
to discussions of how the theory of the present series of papers breaks down if one
attempts to replace the first power of the étale theta function by its N -th
power for some integer N ≥ 2 [cf. the discussion in the final portion of Step (xi) of
the proof of [IUTchIII], Corollary 3.12; the discussion of [IUTchIII], Remark 3.12.1,
(ii)]. Such an “N -th power operation” may also be thought of as corresponding to

the operation of replacing each Tate curve that occurs at an element ∈ V
bad by
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the Tate curve whose q-parameter is given by the N -th power of the q-parameter
of the original Tate curve. This sort of operation on Tate curves may, in turn, be
thought of as an isogeny of the sort that occurs in [GenEll], Lemma 3.5. On the
other hand, the content of the proof of [GenEll], Lemma 3.5, consists essentially
of a computation to the effect that even if one attempts to consider such “N -th
power isogenies” at certain elements ∈ V

bad, the global height of the elliptic curve
over a number field that arises from such an isogeny will typically remain, up to
a relatively small discrepancy, unchanged. In this context, we recall that this sort
of invariance, up to a relatively small discrepancy, of the global height under
isogeny is one of the essential observations that underlies the theory of [Falt] — a
state of affairs that is also of interest in light of the observations of Remark 2.3.3
below.

Remark 2.3.3. Corollary 2.3 may be thought of as an effective version of
the Mordell Conjecture. From this point of view, it is perhaps of interest to
compare the “essential ingredients” that are applied in the proof of Corollary
2.3 [i.e., in effect, that are applied in the present series of papers!] with the “essential
ingredients” applied in [Falt]. The following discussion benefited substantially from
numerous e-mail and skype exchanges with Ivan Fesenko during the summer of
2015.

(i) Although the author does not wish to make any pretensions to completeness
in any rigorous sense, perhaps a rough, informal list of “essential ingredients” in
the case of [Falt] may be given as follows:

(a) results in elementary algebraic number theory related to the “geometry
of numbers”, such as the theory of heights and the Hermite-Minkowski
theorem;

(b) the global class field theory of number fields;
(c) the p-adic theory of Hodge-Tate decompositions;
(d) the p-adic theory of finite flat group schemes;
(e) generalities in algebraic geometry concerning isogenies and Tate modules

of abelian varieties;
(f) generalities in algebraic geometry concerning polarizations of abelian

varieties;
(g) the logarithmic geometry of toroidal compactifications of the moduli stack

of abelian varieties.

With regard to the global class field theory of (b), we observe that there are nu-
merous different approaches to “dissecting” the proofs of the main results of global
class field theory into more primitive components. To some extent, these different
approaches correspond to different points of view arising from subsequent research
on topics related to global class field theory. Here, we wish to consider the approach
taken in [Lang1], Chapters VIII, IX, X, XI, which is attibuted [cf. the Introduction
to [Lang1], Part Two] to Weber. It is of interest, in the context of the discussion
of (vii) below, that this is apparently the oldest approach to proving certain por-
tions of global class field theory. It is also of interest that this approach motivates
the approach to global class field theory via consideration of density of primes in
arithmetic progressions and splitting laws. This aspect of this approach of [Lang1]
is closely related to various issues that appear in [Falt] [cf. [Lang1], Chapter VIII,
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§5]. Moreover, as we shall see in the following discussion, this approach of [Lang1]
to global class field theory is well-suited to discussions of comparisons between the
theory of [Falt] and the inter-universal Teichmüller theory developed in the present
series of papers. At a technical level, the dissection of the global class field theory of
(b), as developed in [Lang1], into more primitive components may be summarized
as follows:

(b-1) the local class field theory of p-adic local fields [cf. [Lang1], Chapter IX,
§3; [Lang1], Chapter XI, §4];

(b-2) the theory of global density of primes [cf. the discussion surrounding the
Universal Norm Index Inequality in [Lang1], Chapter VIII, §3];

(b-3) results in elementary algebraic number theory related to the “geometry
of numbers” that give rise to the Unit Theorem [cf. [Lang1], Chapter V,
§1; [Lang1], Chapter IX, §4];

(b-4) the global reciprocity law, i.e., in effect, the existence of a conductor for
the Artin symbol [cf. [Lang1], Chapter X, §2];

(b-5) Kummer theory [cf. [Lang1], Chapter XI, §1].
Here, we recall that (b-1), (b-2), and (b-3) are applied in [Lang1], Chapter IX, §5,
to verify the Universal Norm Index Equality for cyclic extensions. This Universal
Norm Index Equality is then applied in [Lang1], Chapter X, §1, and combined
with the theory of cyclotomic extensions in [Lang1], Chapter X, §2, to verify (b-4).
Finally, (b-4) is combined with (b-5) in [Lang1], Chapter XI, §2, to complete the
proof of the Existence Theorem for class fields.

(ii) From the point of view of the theory of the present series of papers, (a),
together with (b-3), is reminiscent of the elementary algebraic number theory char-
acterization of nonzero global integers as roots of unity, which plays an im-
portant role in the theory of the present series of papers [cf. [IUTchIII], the proof
of Proposition 3.10]. Moreover, (a) is also reminiscent of the arithmetic degrees
of line bundles that appear, for instance, in the form of global realified Frobe-
nioids, throughout the theory of the present series of papers. Next, we observe that
(b-1) is reminiscent of the p-adic absolute anabelian geometry of [AbsTopIII]
[cf., e.g., [AbsTopIII], Corollary 1.10, (i)]. On the other hand, (b-2) is reminiscent
of repeated applications of the Prime Number Theorem in the present paper
[cf. Propositions 1.6; 2.1, (ii)]; this comparison between (b-2) and the Prime Num-
ber Theorem will be discussed in more detail in (iv) below. Next, we observe [cf.
the discussion of the latter portion of [IUTchIII], Remark 3.12.1, (iii)] that (b-4) is

reminiscent of the application of the elementary fact “Q>0

⋂
Ẑ× = {1}” in the

multiradial algorithms for cyclotomic rigidity isomorphisms in the number
field case [cf. [IUTchI], Example 5.1, (v), as well as the discussion of [IUTchIII],
Remarks 2.3.2, 2.3.3], that is to say, not only in the sense that

both are closely related to the various cyclotomes that appear in global
class field theory theory or inter-universal Teichmüller theory,

but also in the sense that

both may be regarded as analogues of the usual product formula [i.e.,
which appears at the level of Frobenius-like monoids isomorphic to the
multiplicative group of nonzero elements of a number field] at the level of
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certain [étale-like!] profinite Galois groups related to global number
fields.

On the other hand, (b-5) is reminiscent of the central role played through inter-
universal Teichmüller theory by constructions modeled on classical Kummer the-
ory. In fact, these comparisons involving (b-4) and (b-5) are closely related to one
another and will be discussed in more detail in (v), (vi), and (vii) below. Next,
we recall that Hodge-Tate decompositions as in (c) play a central role in the
proofs of the main results of [pGC], which, in turn, underlie the theory of [Ab-
sTopIII]. The ramification computations concerning finite flat group schemes as
in (d) are reminiscent of various p-adic ramification computations concerning log-
shells in [AbsTopIII], as well as in Propositions 1.1, 1.2, 1.3, 1.4 of the present
paper. Whereas [Falt] revolves around the abelian/linear theory of abelian varieties
[cf. (e)], the theory of the present series of papers depends, in an essential way, on
various intricate manipulations involving finite étale coverings of hyperbolic curves,
such as the use of Belyi maps in [GenEll], as well as in the Belyi cuspidal-
izations applied in [AbsTopIII]. The theory of polarizations of abelian varieties
applied in [Falt] [cf. (f)] is reminiscent of the essential role played by commutators
of theta groups in the theory of [EtTh], which, in turn, plays a central role in the
theory of the present series of papers. Finally, the logarithmic geometry of (g) is
reminiscent of the combinatorial anabelian geometry of [SemiAnbd], which is
applied, in [IUTchI], §2, to the logarithmic geometry of coverings of stable curves.

(iii) One way to summarize the discussion of (ii) is as follows:

many aspects of the theory of [Falt] may be regarded as “distant abelian
ancestors” of certain aspects of the “anabelian-based theory” of inter-
universal Teichmüller theory.

Alternatively, one may observe that the overwhelmingly scheme-theoretic nature of
the theory applied in [Falt] lies in stark contrast to the highly non-scheme-theoretic
nature of the absolute anabelian geometry and theory of monoids/Frobenioids ap-
plied in the present series of papers: that is to say,

many aspects of the theory of [Falt] may be regarded as “distant arith-
metically holomorphic ancestors” of certain aspects of the multira-
dial and mono-analytic [i.e., “arithmetically real analytic”] theory
developed in inter-universal Teichmüller theory.

One way to understand this fundamental difference between the theory of [Falt]
and inter-universal Teichmüller theory is by considering the naive goal of construct-
ing some sort of “Frobenius morphism” on a number field [cf. the discussion
of [FrdI], §I3], i.e., which has the effect of multiplying arithmetic degrees by
a positive factor > 1: whereas the theory of [Falt] [cf., e.g., the argument of the
proof of [GenEll], Lemma 3.5, as discussed in Remark 2.3.2, (ii)] may regarded as
a reflection of the point of view that,

so long as one respects the arithmetic holomorphic structure of scheme
theory, such a “Frobenius morphism” on a number field cannot exist,

the essential content of inter-universal Teichmüller theory may be summarized in a
word as the assertion that,
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if one dismantles this arithmetic holomorphic structure in a suitably canon-
ical fashion and allows oneself to work with multiradial/mono-analytic
[i.e., “arithmetically quasi-conformal”] structures, then one can in-
deed construct, in a very canonical fashion, such a “Frobenius mor-
phism” on a number field.

(iv) In the context of the comparison discussed in (ii) concerning (b-2), it is
of interest to note that the fundamental difference discussed in (iii) between the
theory of [Falt] and inter-universal Teichmüller theory is, in some sense, reflected
in the difference between the theory of global density of primes [i.e., (b-2)] and the
Prime Number Theorem. That is to say, the coherence of the sorts of collections
of primes that appear in the theory of global density of primes may be thought
of as a sort of representation, in the context of analytic number theory, of the
arithmetic holomorphic structure of conventional scheme theory. By contrast,
in the context of the Prime Number Theorem, primes of a number field appear, so to
speak, one by one, i.e., in a fashion that is only possible if one deactivates, in the
context of analytic number theory, the coherence that underlies the aggregrations
of primes that appear in the theory of global density of primes. That is to say, this
approach to treating primes “one by one” may be thought of as corresponding to the
dismantling of arithmetic holomorphic structures that occurs in the context of the
multiradial/mono-analytic structures that appear in inter-universal Teichmüller
theory. Here, it is also of interest to note that the way in which one “deactivates
aggregations of primes” in the context of the Prime Number Theorem may be
thought of [cf. the discussion of [IUTchIII], Remark 3.12.2, (i), (c)] as a sort of
dismantling of the ring structure of a number field into its underlying additive
[i.e., counting primes “one by one”!] and multiplicative structures [i.e., the very
notion of a prime!].

(v) The fundamental difference discussed in (iii) between the theory of [Falt]
and inter-universal Teichmüller theory may also be seen in the context of the com-
parison discussed in (ii) concerning (b-4). Indeed, the global reciprocity law of
(b-4), which plays a central role in global class field theory, depends, in an essential
way, on nontrivial relationships between local units [such as the unit determined
by a prime number l at a nonarchimedean prime of a number field of residue char-
acteristic �= l] at one prime of a number field and elements of local value groups
[such as the element determined by l at a nonarchimedean prime of a number field
of residue characteristic l] at another prime of the number field. Such nontrivial
relationships are

fundamentally incompatible with the splittings/decouplings of lo-
cal units and local value groups that play a central role in the dismantling
of arithmetic holomorphic structures that occurs in inter-universal
Teichmüller theory [cf. the discussion of [IUTchIII], Remark 2.3.3, (i);
[IUTchIII], Remark 3.12.2, (i), (a)].

This incompatibility [i.e., with nontrivial relationships between local units and local
value groups at nonarchimedean primes with distinct residue characteristics] may
also be seen quite explicitly in the structure of the various types of prime-strips that
appear in inter-universal Teichmüller theory [cf. [IUTchI], Fig. I1.2]. That is to say,
such nontrivial relationships, which form the content of the global reciprocity law
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of global class field theory, may be thought of as a sort of global Galois-theoretic
representation of the constraints that constitute the arithmetic holomorphic
structure of conventional scheme theory.

(vi) Another fundamental aspect of the comparison discussed in (ii) concern-
ing (b-4) may be seen in the fact that whereas the global reciprocity law of global
class field theory concerns the global reciprocity map, the cyclotomic rigid-
ity algorithms of inter-universal Teichmüller theory to which (b-4) was compared
appear in the context of Kummer-theoretic isomorphisms. That is to say,
although both the global reciprocity map and Kummer-theoretic isomorphisms in-
volve correspondences between multiplicative monoids associated to number fields
and multiplicative monoids that arise from global Galois groups, one fundamental
difference between these two types of correspondence lies in the fact that whereas

Kummer-theoretic isomorphisms satisfy very strong covariant [with
respect to functions] functoriality properties,

the reciprocity maps that appear in various versions of class field theory tend not
to satisfy such strong functoriality properties. This presence or absence of strong
functoriality properties is, to a substantial extent, a reflection of the fact that
whereas Kummer theory may be performed in a very straightforward, tautological,
“general nonsense” fashion in a wide variety of situations,

class field theory may only be conducted in very special arithmetic
situations.

This presence of strong functoriality properties [i.e., in the case of Kummer theory]
is the essential reason for the central role played by Kummer theory [cf. (b-5)]
in inter-universal Teichmüller theory, as well as in many situations that arise in
anabelian geometry in general [cf., e.g., the theory of [Cusp]]. Indeed, the very
tautological/ubiquitous/strongly functorial nature of Kummer theory
makes it well-suited to the sort of dismantling of ring structures that occurs in
inter-universal Teichmüller theory, as well as to the various evaluation operations
of functions at special points that play a central role, in the context of Galois
evaluation, in inter-universal Teichmüller theory [cf. the discussion of [IUTchIII],
Remark 2.3.3]. By contrast, although there exist various higher-dimensional ver-
sions of class field theory involving higher algebraicK-groups, these versions of class
field theory are fundamentally incompatible with the crucial evaluation of function
operations of the sort that occur in inter-universal Teichmüller theory. Indeed, more
generally, except for very exceptional classical cases involving exponential functions
in the case of Q or modular and elliptic functions in the case of imaginary quadratic
fields,

class field theory tends to be very ill-suited to situations that involve
the evaluation of special functions at special points.

Moreover, even if one restricts one’s attention, for instance, to functoriality with
respect to passing to a finite extension field, the functoriality of the reciprocity
maps that occur in class field theory are [unlike Kummer-theoretic isomorphisms!]
contravariant [with respect to functions] and can only be made covariant if one
applies some sort of nontrivial duality result to reverse the direction of the maps —
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a state of affairs that makes class field theory very difficult to apply not only in inter-
universal Teichmüller theory, but also in many situations that arise in anabelian
geometry. On the other hand, in the context of inter-universal Teichmüller theory,
the price, so to speak, that one pays for the very convenient, “general nonsense”
nature of Kummer theory lies in

the highly nontrivial nature — which may be seen, for instance, in the
establishment of various multiradiality properties — of the cyclotomic
rigidity algorithms that appear in inter-universal Teichmüller theory
[cf. the discussion of [IUTchIII], Remark 2.3.3].

Here, we recall that such cyclotomic rigidity algorithms — which never appear
in discussions of conventional arithmetic geometry in which the arithmetic holo-
morphic structure is held fixed — play a central role in inter-universal Teichmüller
theory precisely because of the indeterminacies that arise as a consequence of the
dismantling of the arithmetic holomorphic structure. Finally, in this context, it is of
interest to recall that, although local class field theory is, in a certain limited sense,
applied in inter-universal Teichmüller theory, i.e., in order to obtain cyclotomic
rigidity algorithms for MLF-Galois pairs [cf. [IUTchII], Proposition 1.3, (ii)], it is
only “of limited use” in the sense that the resulting cyclotomic rigidity algorithms
are uniradial [i.e., fail to be multiradial — cf. [IUTchIII], Figs. 2.1, 3.7, and the
surrounding discussions].

(vii) The fundamental incompatibility — i.e., except in very exceptional clas-
sical cases involving exponential functions in the case of Q or modular and elliptic
functions in the case of imaginary quadratic fields — discussed in (vi) of class field
theory with situations that involve the evaluation of special functions at special
points is highly reminiscent of the original point of view of class field theory in
the early twentieth century [cf. Kronecker’s Jugendtraum, Hilbert’s twelfth
problem], i.e., to the effect that further development of class field theory should
proceed precisely by extending the theory involving evaluation of special functions
at special points that exists in these “exceptional classical cases” to the case of ar-
bitrary number fields. This state of affairs is, in turn, highly reminiscent of the fact
that the approach taken in the above discussion to “dissecting global class field the-
ory” is the oldest/original approach to global class field theory, as well as of the
fact that this original approach is the most well-suited to discussions of comparisons
between the theory of [Falt] and inter-universal Teichmüller theory. This state of
affairs is also highly reminiscent of the discussion in [Pano], §3, §4, of the numerous
analogies between inter-universal Teichmüller theory and the classical [i.e., dating
back to the nineteenth century!] theory surrounding Jacobi’s identity for the
theta function on the upper half-plane and Gaussian distributions/integrals.
Finally, this collection of observations, taken as a whole, may be summarized as
follows:

Many of the ideas that appear in inter-universal Teichmüller theory
bear a much closer resemblance to the mathematics of the late nine-
teenth and early twentieth centuries — i.e., to the mathematics of
Gauss, Jacobi, Kummer, Kronecker, Weber, Frobenius, Hilbert,
and Teichmüller — than to the mathematics of the mid- to late twen-
tieth century. This close resemblance suggests strongly that, relative to
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the mathematics of the late nineteenth and early twentieth centuries, the
course of development of a substantial portion of the mathematics of the
mid- to late twentieth century should not be regarded as “unique” or
“inevitable”, but rather as being merely one possible choice among
many viable and fruitful alternatives that existed a priori.

Here, we note that although the use, in inter-universal Teichmüller theory, of Belyi
maps, as well as of the p-adic anabelian geometry of the 1990’s [i.e., [pGC]],
may at first glance look like an incidence of “exceptions” to the “rule” constituted
by this point of view, these “exceptions” may be thought of as “proving the rule”
in the sense that they are far from typical of the mathematics of the late twentieth
century.

Remark 2.3.4. Various aspects of the theory of the present series of papers
are substantially reminiscent of the theory surrounding Bogomolov’s proof of
the geometric version of the Szpiro Conjecture, as discussed in [ABKP], [Zh].
Put another way, these aspects of the theory of the present series of papers may
be thought of as arithmetic analogues of the geometric theory surrounding Bo-
gomolov’s proof. Alternatively, Bogomolov’s proof may be thought of as a sort of
useful elementary guide, or blueprint [perhaps even a sort of Rosetta stone!],
for understanding substantial portions of the theory of the present series of papers.
The author would like to express his gratitude to Ivan Fesenko for bringing to his
attention, via numerous discussions in person, e-mails, and skype conversations
between December 2014 and January 2015, the possibility of the existence of such
fascinating connections between Bogomolov’s proof and the theory of the present
series of papers. We discuss these analogies in more detail in [BogIUT].

Remark 2.3.5. In [Par], a proof is given of the Mordell Conjecture for
function fields over the complex numbers. Like the proof of Bogomolov discussed
in Remark 2.3.4, Parshin’s proof involves metric estimates of “displacements”
that arise from actions of elements of the [usual topological] fundamental group
of the complex hyperbolic curve that serves as the base scheme of the given family
of curves. In particular, we observe that one may pose the following question:

Is it possible to apply some portion of the ideas of the inter-universal
Teichmüller theory developed in the present series of papers to obtain
a proof of the Mordell Conjecture over number fields without making
use of Belyi maps as in the proof of Corollary 2.3 [i.e., the proof of
[GenEll], Theorem 2.1]?

This question was posed to the author by Felipe Voloch in an e-mail in September
2015. The answer to this question is, as far as the author can see at the time of
writing, “no”. On the other hand, this question is interesting in the context of the
discussion of Remarks 2.3.3 and 2.3.4 in that it serves to highlight various inter-
esting aspects of inter-universal Teichmüller theory, as we explain in the following
discussion.

(i) First, we recall [cf., e.g., [Lang2], Chapter I, §1, §2, for more details] that the
starting point of the theory of the Kobayashi distance on a [Kobayashi] hyperbolic
complex manifold is the well-known Schwarz lemma of elementary complex analysis
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and its consequences for the geometry of holomorphic maps from the open unit
disc D in the complex plane to an arbitrary complex manifold. In the following
discussion, we shall refer to this geometry as the Schwarz-theoretic geometry of
D. Perhaps the most fundamental difference between the proofs of Parshin and
Bogomolov lies in the fact that

(PB1) Whereas Parshin’s proof revolves around estimates of displacements aris-
ing from actions of elements of the fundamental group on a certain two-
dimensional complete [Kobayashi] hyperbolic complex manifold by means
of the holomorphic geometry of the Kobayashi distance, i.e., in effect,
the Schwarz-theoretic geometry of D, Bogomolov’s proof [cf. the re-
view of Bogomolov’s proof given in [BogIUT]] revolves around estimates of
displacements arising from actions of elements of the fundamental group
on a one-dimensional real analytic manifold [i.e., a universal covering of
a copy of the unit circle S1] by means of the real analytic symplectic
geometry of the upper half-plane.

Here, it is already interesting to note that this fundamental gap, in the case of
results over complex function fields, between the holomorphic geometry applied in
Parshin’s proof of the Mordell Conjecture and the real analytic symplectic geometry
applied in Bogomolov’s proof of the Szpiro Conjecture is highly reminiscent of the
fundamental gap discussed in Remark 2.3.3, (iii), in the case of results over number
fields, between the arithmetically holomorphic nature of the proof of theMordell
Conjecture given in [Falt] and the “arithmetically quasi-conformal” nature of
the proof of the Szpiro Conjecture [cf. Corollary 2.3] via inter-universal Teichmüller
theory given in the present series of papers. That is to say,

Parshin’s proof is best understood not as a “weaker, or simplified, ver-
sion of Bogomolov’s proof obtained by extracting certain portions of Bogo-
molov’s proof”, but rather as a proof that reflects a fundamentally quali-
tatively different geometry — i.e., holomorphic, as opposed to real an-
alytic — from Bogomolov’s proof.

This point of view already suggests rather strongly, relative to the analogy between
Bogomolov’s proof and inter-universal Teichmüller theory [cf. [BogIUT]] that it is
unnatural/unrealistic to expect to obtain a new proof of the Mordell Conjecture
over number fields by applying some portion of the ideas of the inter-universal
Teichmüller theory.

(ii) At a more technical level, the fundamental difference (PB1) discussed in
(i) may be seen in the fact that

(PB2) whereas Parshin’s proof involves numerous holomorphic maps from
the open unit disc D into one- and two-dimensional complex manifolds
[i.e., in essence, the universal coverings of the base space and total space
of the family of curves under consideration], Bogomolov’s proof revolves
around the real analytic symplectic geometry of a fixed copy of the open
unit disc D [or, equivalently, the upper half-plane], i.e., in Bogomolov’s
proof, one never considers holomorphic maps from D to itself which are
not biholomorphic.

The essentially arbitrary nature of these numerous holomorphic maps that appear
in Parshin’s proof is reflected in the fact that
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(PB3) Parshin’s proof is well-suited to proving a rough qualitative [i.e.,
“finiteness”] result for families of curves of arbitrary genus≥ 2, whereas
Bogomolov’s proof is well-suited to proving a much finer explicit inequal-
ity, but only in the case of families of elliptic curves.

Another technical aspect of the proofs of Parshin and Bogomolov that is closely
related to both (PB2) and (PB3) is the fact that

(PB4) whereas the estimation apparatus of Bogomolov’s proof depends in an
essential way on special properties of particular types of elements — such
as unipotent elements or commutators — of the fundamental group
under consideration, the estimation apparatus of Parshin’s proof is uni-
form for arbitrary [“sufficiently small”] elements of the fundamental
group under consideration.

(iii) Although, as discussed in (ii), it is difficult to see how Parshin’s proof
could be “embedded” into [i.e., obtained as a “suitable portion of”] Bogomolov’s
proof, the Schwarz-theoretic geometry of D admits a “natural embedding” into
[i.e., admits a natural analogy to a suitable portion of] inter-universal Teichmüller
theory, namely, in the form of the theory of categories of localizations of the sort
that appear in [GeoAnbd], §2; [AbsTopI], §4; [AbsTopII], §3. This theory of cate-
gories of localizations culminates in the theory of Belyi cuspidalizations, which is
discussed in [AbsTopII], §3, and applied to obtained the mono-anabelian recon-
struction algorithms of [AbsTopIII], §1. Moreover, the analogy between such
categories of localizations and the classical Schwarz-theoretic geometry of D [or,
equivalently, the upper half-plane] is discussed in the Introduction to [GeoAnbd],
as well as in [IUTchI], Remark 5.1.4. This theory of categories of localizations may
be summarized roughly as follows:

In the context of absolute anabelian geometry over number fields
and their nonarchimedean localizations, Belyi maps play the role of the
Schwarz-theoretic geometry of the open unit disc D, i.e., the role of
realizing a sort of arithmetic version of analytic continuation.

This point of view is also interesting from the point of view of the discussion of
Remark 2.2.4, (iii), i.e., to the effect that [noncritical] Belyi maps play the role of
realizing a sort of arithmetic version of analytic continuation in the proof of
[GenEll], Theorem 2.1. That is to say, from the point of view of the question posed
at the beginning of the present Remark 2.3.5:

Even if, in the context of inter-universal Teichmüller theory, one attempts
to search for an analogue of Parshin’s proof in the form of a “suitable
portion” of the inter-universal Teichmüller theory developed in [IUTchI],
[IUTchII], [IUTchIII] [i.e., even if one avoids consideration of the applica-
tion of [noncritical] Belyi maps in the proof of Corollary 2.3 via [GenEll],
Theorem 2.1], one is ultimately led — i.e., from the point of view of con-
sidering arithmetic analogues of the classical complex theory of analytic
continuation and the Schwarz-theoretic geometry of the open unit
disc D — to the Belyi maps that appear in the Belyi cuspidalizations
of [AbsTopII], §3; [AbsTopIII], §1.
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Put another way, it appears that any search in the realm of inter-universal Te-
ichmüller theory either for some proof of the Mordell Conjecture [over number
fields] or for some analogue of Parshin’s proof [of the Mordell Conjecture over com-
plex function fields] appears to lead inevitably to some application of Belyi maps
to realize some sort of arithmetic analogue of the classical complex theory of ana-
lytic continuation and the Schwarz-theoretic geometry of the open unit disc
D.
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Section 3: Inter-universal Formalism: the Language of Species

In the present §3, we develop — albeit from an extremely naive/non-expert
point of view, relative to the theory of foundations! — the language of species.
Roughly speaking, a “species” is a “type of mathematical object”, such as a
“group”, a “ring”, a “scheme”, etc. In some sense, this language may be thought of
as an explicit description of certain tasks typically executed at an implicit, intuitive
level by mathematicians [i.e., mathematicians who are not equipped with a detailed
knowledge of the theory of foundations!] via a sort of “mental arithmetic” in the
course of interpreting various mathematical arguments. In the context of the theory
developed in the present series of papers, however, it is useful to describe these
intuitive operations explicitly.

In the following discussion, we shall work with various models — consisting
of “sets” and a relation “∈” — of the standard ZFC axioms of axiomatic set theory
[i.e., the nine axioms of Zermelo-Fraenkel, together with the axiom of choice —
cf., e.g., [Drk], Chapter 1, §3]. We shall refer to such models as ZFC-models.
Recall that a (Grothendieck) universe V is a set satisfying the following axioms [cf.
[McLn], p. 194]:

(i) V is transitive, i.e., if y ∈ x, x ∈ V , then y ∈ V .
(ii) The set of natural numbers N ∈ V .
(iii) If x ∈ V , then the power set of x also belongs to V .
(iv) If x ∈ V , then the union of all members of x also belongs to V .
(v) If x ∈ V , y ⊆ V , and f : x → y is a surjection, then y ∈ V .

We shall say that a set E is a V -set if E ∈ V .

The various ZFC-models that we work with may be thought of as [but are
not restricted to be!] the ZFC-models determined by various universes that are
sets relative to some ambient ZFC-model which, in addition to the standard ax-
ioms of ZFC set theory, satisfies the following existence axiom [attributed to the
“Grothendieck school” — cf. the discussion of [McLn], p. 193]:

(†G) Given any set x, there exists a universe V such that x ∈ V .

We shall refer to a ZFC-model that also satisfies this additional axiom of the
Grothendieck school as a ZFCG-model. This existence axiom (†G) implies, in par-
ticular, that:

Given a set I and a collection of universes Vi, where i ∈ I, indexed by I
[i.e., a ‘function’ I � i �→ Vi], there exists a [larger] universe V such that
Vi ∈ V , for i ∈ I.

Indeed, since the graph of the function I � i �→ Vi is a set, it follows that {Vi}i∈I

is a set. Thus, it follows from the existence axiom (†G) that there exists a universe
V such that {Vi}i∈I ∈ V . Hence, by condition (i), we conclude that Vi ∈ V , for
all i ∈ I, as desired. Note that this means, in particular, that there exist infinite
ascending chains of universes

V0 ∈ V1 ∈ V2 ∈ V3 ∈ . . . ∈ Vn ∈ . . . ∈ V
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— where n ranges over the natural numbers. On the other hand, by the axiom of
foundation, there do not exist infinite descending chains of universes

V0 � V1 � V2 � V3 � . . . � Vn � . . .

— where n ranges over the natural numbers.

Although we shall not discuss in detail here the quite difficult issue of whether
or not there actually exist ZFCG-models, we remark in passing that it may be
possible to justify the stance of ignoring such issues in the context of the present
series of papers — at least from the point of view of establishing the validity of
various “final results” that may be formulated in ZFC-models — by invoking the
work of Feferman [cf. [Ffmn]]. Precise statements concerning such issues, however,
lie beyond the scope of the present paper [as well as of the level of expertise of the
author!].

In the following discussion, we use the phrase “set-theoretic formula” as it is
conventionally used in discussions of axiomatic set theory [cf., e.g., [Drk], Chapter 1,
§2], with the following proviso: In the following discussion, it should be understood
that every set-theoretic formula that appears is “absolute” in the sense that its
validity for a collection of sets contained in some universe V relative to the model
of set theory determined by V is equivalent, for any universe W such that V ∈ W ,
to its validity for the same collection of sets relative to the model of set theory
determined by W [cf., e.g., [Drk], Chapter 3, Definition 4.2].

Definition 3.1.

(i) A 0-species S0 is a collection of conditions given by a set-theoretic formula

Φ0(E)

involving an ordered collection E = (E1, . . . ,En0) of sets E1, . . . ,En0 [which we
think of as “indeterminates”], for some integer n0 ≥ 1; in this situation, we shall
refer to E as a collection of species-data for S0. If S0 is a 0-species given by a
set-theoretic formula Φ0(E), then a 0-specimen of S0 is a specific ordered collection
of n0 sets E = (E1, . . . , En0) in some specific ZFC-model that satisfies Φ0(E). If
E is a 0-specimen of a 0-species S0, then we shall write E ∈ S0. If, moreover, it
holds, in any ZFC-model, that the 0-specimens of S0 form a set, then we shall refer
to S0 as 0-small.

(ii) Let S0 be a 0-species. Then a 1-species S1 acting on S0 is a collection of
set-theoretic formulas Φ1, Φ1◦1 satisfying the following conditions:

(a) Φ1 is a set-theoretic formula

Φ1(E,E
′,F)

involving two collections of species-data E, E′ for S0 [i.e., the conditions
Φ0(E), Φ0(E

′) hold] and an ordered collection F = (F1, . . . ,Fn1) of [“in-
determinate”] sets F1, . . . ,Fn1 , for some integer n1 ≥ 1; in this situation,
we shall refer to (E,E′,F) as a collection of species-data for S1 and write
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F : E → E′. If, in some ZFC-model, E,E′ ∈ S0, and F is a specific or-
dered collection of n1 sets that satisfies the condition Φ1(E,E′, F ), then
we shall refer to the data (E,E′, F ) as a 1-specimen of S1 and write
(E,E′, F ) ∈ S1; alternatively, we shall denote a 1-specimen (E,E′, F ) via
the notation F : E → E′ and refer to E (respectively, E′) as the domain
(respectively, codomain) of F : E → E′.

(b) Φ1◦1 is a set-theoretic formula

Φ1◦1(E,E′,E′′,F,F′,F′′)

involving three collections of species-data F : E → E′, F′ : E′ → E′′, F′′ :
E → E′′ for S1 [i.e., the conditions Φ0(E); Φ0(E

′); Φ0(E
′′); Φ1(E,E

′,F);
Φ1(E

′,E′′,F′); Φ1(E,E
′′,F′′) hold]; in this situation, we shall refer to F′′ as

a composite of F with F′ and write F′′ = F′ ◦F [which is, a priori, an abuse
of notation, since there may exist many composites of F with F′ — cf. (c)
below]; we shall use similar terminology and notation for 1-specimens in
specific ZFC-models.

(c) Given a pair of 1-specimens F : E → E′, F ′ : E′ → E′′ of S1 in some
ZFC-model, there exists a unique composite F ′′ : E → E′′ of F with F ′

in the given ZFC-model.

(d) Composition of 1-specimens F : E → E′, F ′ : E′ → E′′, F ′′ : E′′ → E′′′

of S1 in a ZFC-model is associative.

(e) For any 0-specimen E of S0 in a ZFC-model, there exists a [necessarily
unique] 1-specimen F : E → E of S1 [in the given ZFC-model] — which
we shall refer to as the identity 1-specimen idE of E — such that for any
1-specimens F ′ : E′ → E, F ′′ : E → E′′ of S1 [in the given ZFC-model]
we have F ◦ F ′ = F ′, F ′′ ◦ F = F ′′.

If, moreover, it holds, in any ZFC-model, that for any two 0-specimens E, E′ of
S0, the 1-specimens F : E → E′ of S1 [i.e., the 1-specimens of S1 with domain E
and codomain E′] form a set, then we shall refer to S1 as 1-small.

(iii) A species S is defined to be a pair consisting of a 0-species S0 and a 1-
species S1 acting on S0. Fix a species S = (S0,S1). Let i ∈ {0, 1}. Then we shall
refer to an i-specimen of Si as an i-specimen of S. We shall refer to a 0-specimen
(respectively, 1-specimen) ofS as a species-object (respectively, a species-morphism)
of S. We shall say that S is i-small if Si is i-small. We shall refer to a species-
morphism F : E → E′ as a species-isomorphism if there exists a species-morphism
F ′ : E′ → E such that the composites F ◦F ′, F ′◦F are identity species-morphisms;
in this situation, we shall say that E, E′ are species-isomorphic. [Thus, one veri-
fies immediately that composites of species-isomorphisms are species-isomorphisms.]
We shall refer to a species-isomorphism whose domain and codomain are equal as
a species-automorphism. We shall refer to as model-free [cf. Remark 3.1.1 below]
an i-specimen of S equipped with a description via a set-theoretic formula that
is “independent of the ZFC-model in which it is given” in the sense that for any
pair of universes V1, V2 of some ZFC-model such that V1 ∈ V2, the set-theoretic
formula determines the same i-specimen of S, whether interpreted relative to the
ZFC-model determined by V1 or the ZFC-model determined by V2.
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(iv) We shall refer to as the category determined by S in a ZFC-model the
category whose objects are the species-objects of S in the given ZFC-model and
whose arrows are the species-morphisms of S in the given ZFC-model. [One verifies
immediately that this description does indeed determine a category.]

Remark 3.1.1. We observe that any of the familiar descriptions of N [cf., e.g.,
[Drk], Chapter 2, Definitions 2.3, 2.9], Z, Q, Qp, or R, for instance, yield species
[all of whose species-morphisms are identity species-morphisms] each of which has a
unique species-object in any given ZFC-model. Such species are not to be confused
with such species as the species of “monoids isomorphic to N and monoid isomor-
phisms”, which admits many species-objects [all of which are species-isomorphic] in
any ZFC-model. On the other hand, the set-theoretic formula used, for instance, to
define the former “species N” may be applied to define a “model-free species-object
N” of the latter “species of monoids isomorphic to N”.

Remark 3.1.2.

(i) It is important to remember when working with species that

the essence of a species lies not in the specific sets that occur as species-
objects or species-morphisms of the species in various ZFC-models, but
rather in the collection of rules, i.e., set-theoretic formulas, that gov-
ern the construction of such sets in an unspecified, “indeterminate” ZFC-
model.

Put another way, the emphasis in the theory of species lies in the programs — i.e.,
“software” — that yield the desired output data, not on the output data itself.
From this point of view, one way to describe the various set-theoretic formulas
that constitute a species is as a “deterministic algorithm” [a term suggested to the
author by Minhyong Kim] for constructing the sets to be considered.

(ii) One interesting point of view that arose in discussions between the author
and F. Kato is the following. The relationship between the classical approach to
discussing mathematics relative to a fixed model of set theory — an approach in
which specific sets play a central role — and the “species-theoretic” approach con-
sidered here — in which the rules, given by set-theoretic formulas for constructing
the sets of interest [i.e., not specific sets themselves!], play a central role — may
be regarded as analogous to the relationship between classical approaches to alge-
braic varieties — in which specific sets of solutions of polynomial equations in an
algebraically closed field play a central role — and scheme theory — in which the
functor determined by a scheme, i.e., the polynomial equations, or “rules”, that de-
termine solutions, as opposed to specific sets of solutions themselves, play a central
role. That is to say, in summary:

[fixed model of set theory approach : species-theoretic approach]

←→ [varieties : schemes]

A similar analogy — i.e., of the form

[fixed model of set theory approach : species-theoretic approach]

←→ [groups of specific matrices : abstract groups]
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— may be made to the notion of an “abstract group”, as opposed to a “group
of specific matrices”. That is to say, just as a “group of specific matrices may
be thought of as a specific representation of an “abstract group”, the category of
objects determined by a species in a specific ZFC-model may be thought of as a
specific representation of an “abstract species”.

(iii) If, in the context of the discussion of (i), (ii), one tries to form a sort
of quotient, in which “programs” that yield the same sets as “output data” are
identified, then one must contend with the resulting indeterminacy, i.e., working
with programs is only well-defined up to internal modifications of the programs in
question that does not affect the final output. This leads to somewhat intractable
problems concerning the internal structure of such programs — a topic that lies
well beyond the scope of the present work.

Remark 3.1.3.

(i) Typically, in the discussion to follow, we shall not write out explicitly the
various set-theoretic formulas involved in the definition of a species. Rather, it is to
be understood that the set-theoretic formulas to be used are those arising from the
conventional descriptions of the mathematical objects involved. When applying
such conventional descriptions, however, it is important to check that they are
well-defined and do not depend upon the use of arbitrary choices that are not
describable via well-defined set-theoretic formulas.

(ii) The fact that the data involved in a species is given by abstract set-theoretic
formulas imparts a certain canonicality to the mathematical notion constituted
by the species, a canonicality that is not shared, for instance, by mathematical
objects whose construction depends on an invocation of the axiom of choice in
some particular ZFC-model [cf. the discussion of (i) above]. Moreover, by furnishing
a stock of such “canonical notions”, the theory of species allows one, in effect, to
compute the extent of deviation of various “non-canonical objects” [i.e., whose
construction depends upon the invocation of the axiom of choice!] from a sort of
“canonical norm”.

Remark 3.1.4. Note that because the data involved in a species is given by
abstract set-theoretic formulas, the mathematical notion constituted by the species
is immune to, i.e., unaffected by, extensions of the universe — i.e., such as
the ascending chain V0 ∈ V1 ∈ V2 ∈ V3 ∈ . . . ∈ Vn ∈ . . . ∈ V that appears in
the discussion preceding Definition 3.1 — in which one works. This is the sense
in which we apply the term “inter-universal”. That is to say, “inter-universal
geometry” allows one to relate the “geometries” that occur in distinct universes.

Remark 3.1.5. Similar remarks to the remarks made in Remarks 3.1.2, 3.1.3,
and 3.1.4 concerning the significance of working with set-theoretic formulas may be
made with regard to the notions of mutations, morphisms of mutations, mutation-
histories, observables, and cores to be introduced in Definition 3.3 below.

One fundamental example of a species is the following.
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Example 3.2. Categories. The notions of a [small] category and an isomor-
phism class of [covariant] functors between two given [small] categories yield an
example of a species. That is to say, at a set-theoretic level, one may think of a
[small] category as, for instance, a set of arrows, together with a set of composition
relations, that satisfies certain properties; one may think of a [covariant] functor
between [small] categories as the set given by the graph of the map on arrows de-
termined by the functor [which satisfies certain properties]; one may think of an
isomorphism class of functors as a collection of such graphs, i.e., the graphs deter-
mined by the functors in the isomorphism class, which satisfies certain properties.
Then one has “dictionaries”

0-species ←→ the notion of a category

1-species ←→ the notion of an isomorphism class of functors

at the level of notions and

a 0-specimen ←→ a particular [small] category

a 1-specimen ←→ a particular isomorphism class of functors

at the level of specific mathematical objects in a specific ZFC-model. Moreover, one
verifies easily that species-isomorphisms between 0-species correspond to isomor-
phism classes of equivalences of categories in the usual sense.

Remark 3.2.1. Note that in the case of Example 3.2, one could also define a
notion of “2-species”, “2-specimens”, etc., via the notion of an “isomorphism of
functors”, and then take the 1-species under consideration to be the notion of a
functor [i.e., not an isomorphism class of functors]. Indeed, more generally, one
could define a notion of “n-species” for arbitrary integers n ≥ 1. Since, however,
this approach would only serve to add an unnecessary level of complexity to the
theory, we choose here to take the approach of working with “functors considered
up to isomorphism”.

Definition 3.3. Let S = (S0,S1); S = (S0,S1) be species.

(i) A mutation M : S � S is defined to be a collection of set-theoretic
formulas Ψ0, Ψ1 satisfying the following properties:

(a) Ψ0 is a set-theoretic formula

Ψ0(E,E)

involving a collection of species-data E for S0 and a collection of species-
data E for S0; in this situation, we shall write M(E) for E. Moreover, if,
in some ZFC-model, E ∈ S0, then we require that there exist a unique
E ∈ S0 such that Ψ0(E,E) holds; in this situation, we shall write M(E)
for E.

(b) Ψ1 is a set-theoretic formula

Ψ1(E,E
′,F,F)
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involving a collection of species-data F : E → E′ for S1 and a collection
of species-data F : E → E′ for S1, where E = M(E), E′ = M(E′); in
this situation, we shall write M(F) for F. Moreover, if, in some ZFC-
model, (F : E → E′) ∈ S1, then we require that there exist a unique
(F : E → E′) ∈ S1 such that Ψ0(E,E′, F, F ) holds; in this situation,
we shall write M(F ) for F . Finally, we require that the assignment F �→
M(F ) be compatible with composites and map identity species-morphisms
of S to identity species-morphisms of S. In particular, if one fixes a ZFC-
model, then M determines a functor from the category determined by S
in the given ZFC-model to the category determined by S in the given
ZFC-model.

There are evident notions of “composition of mutations” and “identity mutations”.

(ii) Let M,M′ : S � S be mutations. Then a morphism of mutations
Z : M → M′ is defined to be a set-theoretic formula Ξ satisfying the following
properties:

(a) Ξ is a set-theoretic formula

Ξ(E,F)

involving a collection of species-data E for S0 and a collection of species-
data F : M(E) → M′(E) for S1; in this situation, we shall write Z(E) for
F. Moreover, if, in some ZFC-model, E ∈ S0, then we require that there
exist a unique F ∈ S1 such that Ξ(E,F ) holds; in this situation, we shall
write Z(E) for F .

(b) Suppose, in some ZFC-model, that F : E1 → E2 is a species-morphism
of S. Then one has an equality of composite species-morphisms M′(F ) ◦
Z(E1) = Z(E2) ◦ M(F ) : M(E1) → M′(E2). In particular, if one fixes a
ZFC-model, then a morphism of mutations M → M′ determines a natural
transformation between the functors determined by M, M′ in the ZFC-
model — cf. (i).

There are evident notions of “composition of morphisms of mutations” and “identity
morphisms of mutations”. If it holds that for every species-object E of S, Z(E) is
a species-isomorphism, then we shall refer to Z as an isomorphism of mutations. In
particular, one verifies immediately that Z is an isomorphism of mutations if and
only if there exists a morphism of mutations Z′ : M′ → M such that the composite
morphisms of mutations Z′ ◦ Z : M → M, Z ◦ Z′ : M′ → M′ are the respective
identity morphisms of the mutations M, M′.

(iii) Let M : S � S be a mutation. Then we shall say that M is a mutation-
equivalence if there exists a mutation M′ : S � S, together with isomorphisms
of mutations between the composites M ◦ M′, M′ ◦ M and the respective iden-
tity mutations. In this situation, we shall say that M, M′ are mutation-quasi-
inverses to one another. Finally, we observe that, if we suppose further that
S, S are 1-small, then for any two given species-objects in the domain species
of a mutation-equivalence, the mutation-equivalence induces a bijection between
the set of species-morphisms (respectively, species-isomorphisms) between the two
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given species-objects [of the domain species] and the set of species-morphisms (re-
spectively, species-isomorphisms) between the two species-objects [of the codomain
species] obtained by applying the mutation-equivalence to the two given species-
objects.

(iv) Let �Γ be an oriented graph, i.e., a graph Γ, which we shall refer to as the

underlying graph of �Γ, equipped with the additional data of a total ordering, for
each edge e of Γ, on the set [of cardinality 2] of branches of e [cf., e.g., [AbsTopIII],

§0]. Then we define a mutation-history H = (�Γ,S∗,M∗) [indexed by �Γ] to be a
collection of data as follows:

(a) for each vertex v of �Γ, a species Sv;

(b) for each edge e of �Γ, running from a vertex v1 to a vertex v2, a mutation
Me : Sv1 � Sv2 .

In this situation, we shall refer to the vertices, edges, and branches of �Γ as vertices,
edges, and branches of H. Thus, the notion of a “mutation-history” may be thought
of as a species-theoretic version of the notion of a “diagram of categories” given in
[AbsTopIII], Definition 3.5, (i).

(v) Let H = (�Γ,S∗,M∗) be a mutation-history; S a species. For simplicity,

we assume that the underlying graph of �Γ is simply connected. Then we shall refer
to as a(n) [S-valued] covariant (respectively, contravariant) observable V of the
mutation-history H a collection of data as follows:

(a) for each vertex v of �Γ, a mutation Vv : Sv → S, which we shall refer to
as the observation mutation at v;

(b) for each edge e of �Γ, running from a vertex v1 to a vertex v2, a morphism
of mutations Ve : Vv1 → Vv2 ◦Me (respectively, Ve : Vv2 ◦Me → Vv1).

If V is a covariant observable such that all of the morphisms of mutations “Ve” are
isomorphisms of mutations, then we shall refer to the covariant observable V as a
core. Thus, one may think of a core C of a mutation-history as lying “under” the
entire mutation-history in a “uniform fashion”. Also, we shall refer to the “property
[of an observable] of being a core” as the “coricity” of the observable. Finally, we
note that the notions of an “observable” and a “core” given here may be thought
of as simplified, species-theoretic versions of the notions of “observable” and “core”
given in [AbsTopIII], Definition 3.5, (iii).

Remark 3.3.1.

(i) One well-known consequence of the axiom of foundation of axiomatic set
theory is the assertion that “∈-loops”

a ∈ b ∈ c ∈ . . . ∈ a

can never occur in the set theory in which one works. On the other hand, there
are many situations in mathematics in which one wishes to somehow “identify”
mathematical objects that arise at higher levels of the ∈-structure of the set theory
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under consideration with mathematical objects that arise at lower levels of this
∈-structure. In some sense, the notions of a “set” and of a “bijection of sets” allow
one to achieve such “identifications”. That is to say, the mathematical objects at
both higher and lower levels of the ∈-structure constitute examples of the same
mathematical notion of a “set”, so that one may consider “bijections of sets” be-
tween those sets without violating the axiom of foundation. In some sense, the
notion of a species may be thought of as a natural extension of this observation.
That is to say,

the notion of a “species” allows one to consider, for instance, species-
isomorphisms between species-objects that occur at different levels of the
∈-structure of the set theory under consideration — i.e., roughly speaking,
to “simulate ∈-loops” — without violating the axiom of foundation.

Moreover, typically the sorts of species-objects at different levels of the ∈-structure
that one wishes to somehow have “identified” with one another occur as the result
of executing the mutations that arise in some sort of mutation-history

. . . � S � S � S � . . . � S � . . .

[where S = (S0,S1); S = (S0,S1); S = (S
0
,S

1
) are species] — e.g., the “output

species-objects” of the “S” on the right that arise from applying various mutations
to the “input species-objects” of the “S” on the left.

(ii) In the context of constructing “loops” in a mutation-history as in the final
display of (i), we observe that

the simpler the structure of the species involved, the easier it is to
construct “loops”.

It is for this reason that species such as the species determined by the notion of
a category [cf. Example 3.2] are easier to work with, from the point of view of
constructing “loops”, than more complicated species such as the species determined
by the notion of a scheme. This is one of the principal motivations for the “geometry
of categories” — of which “absolute anabelian geometry” is the special case that
arises when the categories involved are Galois categories — i.e., for the theory of
representing scheme-theoretic geometries via categories [cf., e.g., the Introductions
of [MnLg], [SemiAnbd], [Cusp], [FrdI]]. At a more concrete level, the utility of
working with categories to reconstruct objects that occurred at earlier stages of
some sort of “series of constructions” [cf. the mutation-history of the final display
of (i)!] may be seen in the “reconstruction of the underlying scheme” in various
situations throughout [MnLg] by applying the natural equivalence of categories of
the final display of [MnLg], Definition 1.1, (iv), from a certain category constructed
from a log scheme, as well as in the theory of “slim exponentiation” discussed in
the Appendix to [FrdI].

(iii) Again in the context of mutation-histories such as the one given in the
final display of (i), although one may, on certain occasions, wish to apply various
mutations that fundamentally alter the structure of the mathematical objects in-
volved and hence give rise to “output species-objects” of the “S” on the right that
are related in a highly nontrivial fashion to the “input species-objects” of the “S”
on the left, it is also of interest to consider
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“portions” of the various mathematical objects that occur that are left
unaltered by the various mutations that one applies.

This is precisely the reason for the introduction of the notion of a core of a mutation-
history. One important consequence of the construction of various cores associated
to a mutation-history is that often

one may apply various cores associated to a mutation-history to describe,
by means of non-coric observables, the portions of the various math-
ematical objects that occur which are altered by the various mutations
that one applies in terms of the unaltered portions, i.e., cores.

Indeed, this point of view plays a central role in the theory of the present series of
papers — cf. the discussion of Remark 3.6.1, (ii), below.

Remark 3.3.2. One somewhat naive point of view that constituted one of
the original motivations for the author in the development of theory of the present
series of papers is the following. In the classical theory of schemes, when considering
local systems on a scheme, there is no reason to restrict oneself to considering
local systems valued in, say, modules over a finite ring. If, moreover, there is
no reason to make such a restriction, then one is naturally led to consider, for
instance, local systems of schemes [cf., e.g., the theory of the “Galois mantle” in
[pTeich]], or, indeed, local systems of more general collections of mathematical
objects. One may then ask what happens if one tries to consider local systems
on the schemes that occur as fibers of a local system of schemes. [More concretely,
if X is, for instance, a connected scheme, then one may consider local systems X
over X whose fibers are isomorphic to X; then one may repeat this process, by
considering such local systems over each fiber of the local system X on X, etc.] In
this way, one is eventually led to the consideration of “systems of nested local
systems” — i.e., a local system over a local system over a local system, etc. It is
precisely this point of view that underlies the notion of “successive iteration of a
given mutation-history”, relative to the terminology formulated in the present §3.
If, moreover, one thinks of such “successive iterates of a given mutation-history” as
being a sort of abstraction of the naive idea of a “system of nested local systems”,
then the notion of a core may be thought of as a sort of mathematical object that
is invariant with respect to the application of the operations that gave rise to the
“system of nested local systems”.

Example 3.4. Topological Spaces and Fundamental Groups.

(i) One verifies easily that the notions of a topological space and a continuous
map between topological spaces determine an example of a speciesStop. In a similar

vein, the notions of a universal covering X̃ → X of a pathwise connected topological

space X and a continuous map between such universal coverings X̃ → X, Ỹ → Y

[i.e., a pair of compatible continuous maps X̃ → Ỹ , X → Y ], considered up to

composition with a deck transformation of the universal covering Ỹ → Y , determine
an example of a species Su-top. We leave to the reader the routine task of writing
out the various set-theoretic formulas that define the species structures of Stop,
Su-top. Here, we note that at a set-theoretic level, the species-morphisms of Su-top
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are collections of continuous maps [between two given universal coverings], any two
of which differ from one another by composition with a deck transformation.

(ii) One verifies easily that the notions of a group and an outer homomorphism
between groups [i.e., a homomorphism considered up to composition with an inner
automorphism of the codomain group] determine an example of a species Sgp. We
leave to the reader the routine task of writing out the various set-theoretic formulas
that define the species structure of Sgp. Here, we note that at a set-theoretic
level, the species-morphisms of Sgp are collections of homomorphisms [between
two given groups], any two of which differ from one another by composition with
an inner automorphism.

(iii) Now one verifies easily that the assignment

(X̃ → X) �→ Aut(X̃/X)

— where (X̃ → X) is a species-object of Su-top, and Aut(X̃/X) denotes the group

of deck transformations of the universal covering X̃ → X — determines a mutation
Su-top � Sgp. That is to say, the “fundamental group” may be thought of as a
sort of mutation.

Example 3.5. Absolute Anabelian Geometry.

(i) Let S be a class of connected normal schemes that is closed under isomor-
phism [of schemes]. Suppose that there exists a set ES of schemes describable by
a set-theoretic formula with the property that every scheme of S is isomorphic to
some scheme belonging to ES . Then just as in the case of universal coverings of
topological spaces discussed in Example 3.4, (i), one verifies easily, by applying
the set-theoretic formula describing ES , that the universal pro-finite étale cover-

ings X̃ → X of schemes X belonging to S and isomorphisms of such coverings
considered up to composition with a deck transformation give rise to a species SS .

(ii) Let G be a class of topological groups that is closed under isomorphism
[of topological groups]. Suppose that there exists a set EG of topological groups
describable by a set-theoretic formula with the property that every topological
group of G is isomorphic to some topological group belonging to EG . Then just as
in the case of abstract groups discussed in Example 3.4, (ii), one verifies easily, by
applying the set-theoretic formula describing EG , that topological groups belonging
to G and [bi-continuous] outer isomorphisms between such topological groups give
rise to a species SG .

(iii) Let S be as in (i). Then for an appropriate choice of G, by associating to a
universal pro-finite étale covering the resulting group of deck transformations, one
obtains a mutation

Π : SS � SG

[cf. Example 3.4, (iii)]. Then one way to define the notion that the schemes
belonging to the class S are “[absolute] anabelian” is to require the specification
of a mutation

A : SG � SS
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which forms a mutation-quasi-inverse to Π. Here, we note that the existence of the
bijections [i.e., “fully faithfulness”] discussed in Definition 3.3, (iii), is, in essence,
the condition that is usually taken as the definition of “anabelian”. By contrast,
the species-theoretic approach of the present discussion may be thought of as an
explicit mathematical formulation of the algorithmic approach to [absolute] an-
abelian geometry discussed in the Introduction to [AbsTopI].

(iv) The framework of [absolute] anabelian geometry [cf., e.g., the framework
discussed above in (iii)] gives a good example of the importance of specifying pre-
cisely what species one is working with in a given “series of constructions” [cf.,
e.g., the mutation-history of the final display of Remark 3.3.1, (i)]. That is to say,
there is a quite substantial difference between working with a

profinite group in its sole capacity as a profinite group

and working with the same profinite group — which may happen to arise as the
étale fundamental group of some scheme! —

regarded as being equipped with various data that arise from the construc-
tion of the profinite group as the étale fundamental group of some scheme.

It is precisely this sort of issue that constituted one of the original motivations for
the author in the development of the theory of species presented here.

Example 3.6. The Étale Site and Frobenius.

(i) Let p be a prime number. If S is a reduced scheme over Fp, then denote by

S(p) the scheme with the same topological space as S, but whose structure sheaf is
given by the subsheaf

OS(p)
def
= (OS)

p ⊆ OS

of p-th powers of sections of S. Thus, the natural inclusion OS(p) ↪→ OS induces
a morphism ΦS : S → S(p). Moreover, “raising to the p-th power” determines a
natural isomorphism αS : S(p) ∼→ S such that the resulting composite αS ◦ ΦS :
S → S is the Frobenius morphism of S. Write

Sp-sch

for the species of reduced quasi-compact schemes over Fp and quasi-compact mor-
phisms of schemes. Then consider the [small] category Sét — i.e., “the small étale
site of S” — defined as follows:

An object of Sét is a(n) [necessarily quasi-affine, by Zariski’s Main Theo-
rem!]

étale morphism of finite presentation T → S equipped with
a finite open cover {Ui}i∈I of S, together with factorizations

T |Ui
⊆ A

Ni

Ui
→ Ui for each i ∈ I

—where I is a finite subset of the set of open subschemes of S; ANi

Ui
denotes

a standard copy of affine Ni-space over Ui, for some integer Ni ≥ 1; the
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“⊆” exhibits T |Ui as a finitely presented subscheme of ANi

Ui
; we observe

that any étale morphism of finite presentation T → S necessarily admits
such auxiliary data parametrized by some index set I. A morphism of Sét

from an object T1 → S to an object T2 → S [each of which is equipped with
auxiliary data] is a(n) [necessarily étale of finite presentation] S-morphism
T1 → T2.

In particular, one may construct an assignment

S �→ Sét

that maps a species-object S of Sp-sch to the [small] category Sét in such a way
that the assignment S �→ Sét is contravariantly functorial with respect to species-
morphisms S1 → S2 of Sp-sch, and, moreover, may be described via set-theoretic
formulas. Thus, such an assignment determines an “étale site mutation”

Mét : Sp-sch � Scat

— where we write Scat for the species of categories and isomorphism classes of
contravariant functors [i.e., a slightly modified form of the species considered in
Example 3.2]. Another natural assignment in the present context is the assignment

S �→ Spf

which maps S to its perfection Spf, i.e., the scheme determined by taking the inverse
limit of the inverse system . . . → S → S → S obtained by considering iterates of
the Frobenius morphism of S. Thus, by considering the final copy of “S” in this
inverse system, one obtains a natural morphism βS : Spf → S. Finally, one obtains
a “perfection mutation”

Mpf : Sp-sch � Sp-sch

by considering the set-theoretic formulas underlying the assignment S �→ Spf.

(ii) Write

Fp-sch : Sp-sch � Sp-sch

for the “Frobenius mutation” obtained by considering the set-theoretic formulas
underlying the assignment S �→ S(p). Thus, one may formulate the well-known
“invariance of the étale site under Frobenius” [cf., e.g., [FK], Chapter I, Proposition
3.16] as the statement that the “étale site mutation” Mét exhibits Scat as a core
— i.e., an “invariant piece” — of the “Frobenius mutation-history”

. . . � Sp-sch � Sp-sch � Sp-sch � Sp-sch � . . .

determined by the “Frobenius mutation” Fp-sch. In this context, we observe that
the “perfection mutation” Mpf also yields a core — i.e., another “invari-
ant piece” — of the Frobenius mutation-history. On the other hand, the nat-
ural morphism ΦS : S → S(p) may be interpreted as a covariant observable
of this mutation-history whose observation mutations are the identity mutations
idSp-sch : Sp-sch � Sp-sch. Since ΦS is not, in general, an isomorphism, it follows
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that this observable constitutes an example of an non-coric observable. Never-
theless, the natural morphism βS : Spf → S may be interpreted as a morphism
of mutations Mpf → idSp-sch that serves to relate the non-coric observable just
considered to the coric observable arising from Mpf.

(iii) One may also develop a version of (i), (ii) for log schemes; we leave the
routine details to the interested reader. Here, we pause to mention that the theory of
log schemes motivates the following “combinatorial monoid-theoretic” version
of the non-coric observable on the Frobenius mutation-history of (ii). Write

Smon

for the species of torsion-free abelian monoids and morphisms of monoids. If M

is a species-object of Smon, then write M (p) def
= p ·M ⊆ M . Then the assignment

M �→ M (p) determines a “monoid-Frobenius mutation”

Fmon : Smon � Smon

and hence a “monoid-Frobenius mutation-history”

. . . � Smon � Smon � . . .

which is equipped with a non-coric contravariant observable determined by the
natural inclusion morphism M (p) ↪→ M and the observation mutations given by the
identity mutations idSmon : Smon � Smon. On the other hand, the p-perfection
Mpf of M , i.e., the inductive limit of the inductive system M ↪→ M ↪→ M ↪→ . . .
obtained by considering the inclusions given by multiplying by p, gives rise to a
“monoid-p-perfection mutation”

Mpf-mon : Smon � Smon

— which may be interpreted as a core of the monoid-Frobenius mutation-history.
Finally, the natural inclusion of monoids M ↪→ Mpf may be interpreted as a mor-
phism of mutations idSmon → Mpf-mon that serves to relate the non-coric observable
just considered to the coric observable arising from Mpf-mon.

Remark 3.6.1.

(i) The various constructions of Example 3.6 may be thought of as providing,
in the case of the phenomena of “invariance of the étale site under Frobenius” and
“invariance of the perfection under Frobenius”, a “species-theoretic intepretation”
— i.e., via consideration of

“coric” versus “non-coric” observables

— of the difference between “étale-type” and “Frobenius-type” structures [cf.
the discussion of [FrdI], §I4]. This sort of approach via “combinatorial patterns”
to expressing the difference between “étale-type” and “Frobenius-type” structures
plays a central role in the theory of the present series of papers. Indeed, the
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mutation-histories and cores considered in Example 3.6, (ii), (iii), may be thought
of as the underlying motivating examples for the theory of both

· the vertical lines, i.e., consisting of log-links, and

· the horizontal lines, i.e., consisting of Θ×μ-/Θ×μ
gau-/Θ

×μ
LGP-/Θ

×μ
lgp -links,

of the log-theta-lattice [cf. [IUTchIII], Definitions 1.4, 3.8]. Finally, we recall
that this approach to understanding the log-links may be seen in the introduction
of the terminology of “observables” and “cores” in [AbsTopIII], Definition 3.5, (iii).

(ii) Example 3.6 also provides a good example of the important theme [cf. the
discussion of Remark 3.3.1, (iii)] of

describing non-coric data in terms of coric data

— cf. the morphism βS : Spf → S of Example 3.6, (ii); the natural inclusion
M ↪→ Mpf of Example 3.6, (iii). From the point of view of the vertical and hori-
zontal lines of the log-theta-lattice [cf. the discussion of (i)], this theme may also
be observed in the vertically coric log-shells that serve as a common receptacle for
the various arrows of the log-Kummer correspondences of [IUTchIII], Theorem
3.11, (ii), as well as in the multiradial representations of [IUTchIII], Theorem 3.11,
(i), which describe [certain aspects of] the arithmetic holomorphic structure
on one vertical line of the log-theta-lattice in terms that may be understood rela-
tive to an alien arithmetic holomorphic structure on another vertical line — i.e.,
separated from the first vertical line by horizontal arrows — of the log-theta-lattice
[cf. [IUTchIII], Remark 3.11.1; [IUTchIII], Remark 3.12.2, (ii)].

Remark 3.6.2.

(i) In the context of the theme of “coric descriptions of non-coric data” dis-
cussed in Remark 3.6.1, (ii), it is of interest to observe the significance of the use of
set-theoretic formulas [cf. the discussion of Remarks 3.1.2, 3.1.3, 3.1.4, 3.1.5] to
realize such descriptions. That is to say, descriptions in terms of arbitrary choices
that depend on a particular model of set theory [cf. Remark 3.1.3] do not allow one
to calculate in terms that make sense in one universe the operations performed
in an alien universe! This is precisely the sort of situation that one encoun-
ters when one considers the vertical and horizontal arrows of the log-theta-lattice
[cf. (ii) below], where distinct universes arise from the distinct scheme-theoretic
basepoints on either side of such an arrow that correspond to distinct ring the-
ories, i.e., ring theories that cannot be related to one another by means of a ring
homomorphism — cf. the discussion of Remark 3.6.3 below. Indeed,

it was precisely the need to understand this sort of situation that led the
author to develop the “inter-universal” version of Teichmüller theory
exposed in the present series of papers.

Finally, we observe that the algorithmic approach [i.e., as opposed to the “fully
faithfulness/Grothendieck Conjecture-style approach” — cf. Example 3.5, (iii)] to
reconstruction issues via set-theoretic formulas plays an essential role in this con-
text. That is to say, although different algorithms, or software, may yield the
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same output data, it is only by working with specific algorithms that one may
understand the delicate inter-relations that exist between various components of
the structures that occur as one performs various operations [i.e., the mutations
of a mutation-history]. In the case of the theory developed in the present series
of papers, one central example of this phenomenon is the cyclotomic rigidity
isomorphisms that underlie the theory of Θ×μ

LGP-link compatibility discussed in
[IUTchIII], Theorem 3.11, (iii), (c), (d) [cf. also [IUTchIII], Remarks 2.2.1, 2.3.2].

(ii) The algorithmic approach to reconstruction that is taken throughout the
present series of papers, as well as, for instance, in [FrdI], [EtTh], and [AbsTopIII],
was conceived by the author in the spirit of the species-theoretic formulation ex-
posed in the present §3. Nevertheless, [cf. Remark 3.1.3, (i)] we shall not explicitly
write out the various set-theoretic formulas involved in the various species, muta-
tions, etc. that are implicit throughout the theory of the present series of papers.
Rather, it is to be understood that the set-theoretic formulas to be used are those
arising from the conventional descriptions that are given of the mathematical ob-
jects involved. When applying such conventional descriptions, however, the reader
is obliged to check that they are well-defined and do not depend upon the use of
arbitrary choices that are not describable via well-defined set-theoretic formulas.

(iii) The sharp contrast between

· the canonicality imparted by descriptions via set-theoretic formulas in
the context of extensions of the universe in which one works

[cf. Remarks 3.1.3, 3.1.4] and

· the situation that arises if one allows, in one’s descriptions, the various
arbitrary choices arising from invocations of the axiom of choice

may be understood somewhat explicitly if one attempts to “catalogue the various
possibilities” corresponding to various possible choices that may occur in one’s de-
scription. That is to say, such a “cataloguing operation” typically obligates one
to work with “sets of very large cardinality”, many of which must be constructed
by means of set-theoretic exponentiation [i.e., such as the operation of passing
from a set E to the power set “2E” of all subsets of E]. Such a rapid outbreak of
“unwieldy large sets” is reminiscent of the rapid growth, in the p-adic crystalline
theory, of the p-adic valuations of the denominators that occur when one formally
integrates an arbitrary connection, as opposed to a “canonical connection”
of the sort that arises from a crystalline representation. In the p-adic theory, such
“canonical connections” are typically related to “canonical liftings”, such as, for
instance, those that occur in p-adic Teichmüller theory [cf. [pOrd], [pTeich]]. In
this context, it is of interest to recall that the canonical liftings of p-adic Teichmüller
theory may, under certain conditions, be thought of as liftings “of minimal com-
plexity” in the sense that their Witt vector coordinates are given by polynomials of
minimal degree — cf. the computations of [Finot].

Remark 3.6.3.

(i) In the context of Remark 3.6.2, it is useful to recall the fundamental reason
for the need to pursue “inter-universality” in the present series of papers [cf. the
discussion of [IUTchIII], Remark 1.2.4; [IUTchIII], Remark 1.4.2], namely,



INTER-UNIVERSAL TEICHMÜLLER THEORY IV 83

since étale fundamental groups — i.e., in essence, Galois groups — are
defined as certain automorphism groups of fields/rings, the definition of
such a Galois group as a certain automorphism group of some ring struc-
ture is fundamentally incompatible with the vertical and horizontal
arrows of the log-theta-lattice [i.e., which do not arise from ring homo-
morphisms]!

In this respect, “transformations” such as the vertical and horizontal arrows of
the log-theta-lattice differ, quite fundamentally, from “transformations” that are
compatible with the ring structures on the domain and codomain, i.e., morphisms
of rings/schemes, which tautologically give rise to functorial morphisms
between the respective étale fundamental groups. Put another way, in the notation
of [IUTchI], Definition 3.1, (e), (f) [which will be applied throughout the remainder
of the present Remark 3.6.3], for, say, v ∈ V

non,

the only natural correspondence that may be described by means of set-
theoretic formulas between the isomorphs of the local base field Ga-
lois groups “Gv” on either side of a vertical or horizontal arrow of the
log-theta-lattice is the correspondence constituted by an indeterminate
isomorphism of topological groups.

A similar statement may be made concerning the isomorphs of the geometric funda-

mental group Δv
def
= Ker(Πv � Gv) on either side of a vertical [but not horizontal!

— cf. the discussion of (ii) below] arrow of the log-theta-lattice — that is to say,

the only natural correspondence that may described by means of set-
theoretic formulas between these isomorphs is the correspondence con-
stituted by an indeterminate isomorphism of topological groups
equipped with some outer action by the respective isomorph of “Gv”

— cf. the discussion of [IUTchIII], Remark 1.2.4. Here, again we recall from the
discussion of Remark 3.6.2, (i), (ii), that it is only by working with such corre-
spondences that may be described by means of set-theoretic formulas that one may
obtain descriptions that allow one to calculate the operations performed in one
universe from the point of view of an alien universe.

(ii) One fundamental difference between the vertical and horizontal arrows of

the log-theta-lattice is that whereas, for, say, v ∈ V
bad,

(V1) one identifies, up to isomorphism, the isomorphs of the full arithmetic
fundamental group “Πv” on either side of a vertical arrow,

(H1) one distinguishes the “Δv’s” on either side of a horizontal arrow, i.e.,
one only identifies, up to isomorphism, the local base field Galois groups
“Gv” on either side of a horizontal arrow.

— cf. the discussion of [IUTchIII], Remark 1.4.2. One way to understand the
fundamental reason for this difference is as follows.

(V2) In order to construct the log-link — i.e., at a more concrete level, the
power series that defines the pv-adic logarithm at v — it is necessary
to avail oneself of the local ring structures at v [cf. the discussion of
[IUTchIII], Definition 1.1, (i), (ii)], which may only be reconstructed from
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the full “Πv” [i.e., not from “Gv stripped of its structure as a quotient
of Πv” — cf. the discussion of [IUTchIII], Remark 1.4.1, (i); [IUTchIII],
Remark 2.1.1, (ii); [AbsTopIII], §I3].

(H2) In order to construct the Θ×μ
gau-/Θ

×μ
LGP-/Θ

×μ
lgp -links — i.e., at a more

concrete level, the correspondence

q �→
{
qj

2
}
j=1,...,l�

[cf. [IUTchII], Remark 4.11.1] — it is necessary, in effect, to construct
an “isomorphism” between a mathematical object [i.e., the theta values

“qj
2

”] that depends, in an essential way, on regarding the various “j” as

distinct labels [which are constructed from “Δv”!] and a mathematical
object [i.e., “q”] that is independent of these labels; it is then a tautol-

ogy that such an “isomorphism” may only be achieved if the labels — i.e.,
in essence, “Δv” — on either side of the “isomorphism” are kept distinct
from one another.

Here, we observe in passing that the “apparently horizontal arrow-related” issue dis-
cussed in (H2) of simultaneous realization of “label-dependent” and “label-
free” mathematical objects is reminiscent of the vertical arrow portion of the bi-
coricity theory of [IUTchIII], Theorem 1.5 — cf. the discussion of [IUTchIII],
Remark 1.5.1, (i), (ii); Step (vii) of the proof of [IUTchIII], Corollary 3.12.
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